These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35200315)

  • 1. Low-Cost 3D Printer Drawn Optical Microfibers for Smartphone Colorimetric Detection.
    Hossain MA; Biswas PC; Rani S; Binte Eskender S; Islam MF; Chakma A; Canning J
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical couplers and step-index fibers fabricated using FDM 3D printers.
    Gozzard DR; Craine R; Hickey D; Martin A; Shen W; Sones B
    Opt Lett; 2022 Oct; 47(19):5124-5127. PubMed ID: 36181202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed fiber optic faceplates by custom controlled fused deposition modeling.
    Wang Y; Gawedzinski J; Pawlowski ME; Tkaczyk TS
    Opt Express; 2018 Jun; 26(12):15362-15376. PubMed ID: 30114785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of polyethylene terephthalate glycol (PETG), Simubone™, and photopolymer resin as 3D printed temporal bone models for surgical simulation.
    Cafino R; Soliven MMT; Velasco LC; Lopez KH
    Asian J Surg; 2024 Jan; 47(1):237-244. PubMed ID: 37633781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-IR Hollow-core microstructured fiber drawn from a 3D printed PETG preform.
    Talataisong W; Ismaeel R; Marques THR; Abokhamis Mousavi S; Beresna M; Gouveia MA; Sandoghchi SR; Lee T; Cordeiro CMB; Brambilla G
    Sci Rep; 2018 May; 8(1):8113. PubMed ID: 29802299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drawing optical fibers from three-dimensional printers.
    Canning J; Hossain MA; Han C; Chartier L; Cook K; Athanaze T
    Opt Lett; 2016 Dec; 41(23):5551-5554. PubMed ID: 27906236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability and Tensile Performance of 3D Printed Polyethylene Terephthalate Glycol Using Fused Deposition Modelling.
    Guessasma S; Belhabib S; Nouri H
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31336645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Cost Method to Prepare Biocompatible Filaments with Enhanced Physico-Mechanical Properties for FDM 3D Printing.
    Tan DK; Münzenrieder N; Maniruzzaman M; Nokhodchi A
    Curr Drug Deliv; 2021; 18(6):700-711. PubMed ID: 33155909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels.
    Koltsov SI; Statsenko TG; Morozova SM
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printable Magnetic Microfibers: Development and Characterization for Four-Dimensional Printing.
    Han Y; Lu Q; Xie J; Song KY; Luo D
    3D Print Addit Manuf; 2024 Apr; 11(2):e638-e654. PubMed ID: 38689922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication.
    Rijckaert S; Daelemans L; Cardon L; Boone M; Van Paepegem W; De Clerck K
    Polymers (Basel); 2022 Jan; 14(2):. PubMed ID: 35054704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of filaments for fused deposition modeling 3D printing with medical grade poly(lactic-co-glycolic acid) copolymers.
    Feuerbach T; Callau-Mendoza S; Thommes M
    Pharm Dev Technol; 2019 Apr; 24(4):487-493. PubMed ID: 30149761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone.
    Chen Y; Fu Q; Li D; Xie J; Ke D; Song Q; Tang Y; Wang H
    Anal Bioanal Chem; 2017 Nov; 409(28):6567-6574. PubMed ID: 28871402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Polyethylene Terephthalate Glycol-Sepiolite Composites with Nanoscale Orientation.
    Kim H; Ryu KH; Baek D; Khan TA; Kim HJ; Shin S; Hyun J; Ahn JS; Ahn SJ; Kim HJ; Koo J
    ACS Appl Mater Interfaces; 2020 May; 12(20):23453-23463. PubMed ID: 32349467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing.
    Xu P; Li J; Meda A; Osei-Yeboah F; Peterson ML; Repka M; Zhan X
    Int J Pharm; 2020 Oct; 588():119760. PubMed ID: 32800939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of extra virgin olive oil adulteration using smartphone videos.
    Song W; Song Z; Vincent J; Wang H; Wang Z
    Talanta; 2020 Aug; 216():120920. PubMed ID: 32456904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS.
    Oladeji S; Mohylyuk V; Jones DS; Andrews GP
    Int J Pharm; 2022 Mar; 616():121553. PubMed ID: 35131354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.