These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35200315)
21. Biocompatibility of 3D-Printed PLA, PEEK and PETG: Adhesion of Bone Marrow and Peritoneal Lavage Cells. Shilov SY; Rozhkova YA; Markova LN; Tashkinov MA; Vindokurov IV; Silberschmidt VV Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235903 [TBL] [Abstract][Full Text] [Related]
22. Integrated Smartphone-App-Chip System for On-Site Parts-Per-Billion-Level Colorimetric Quantitation of Aflatoxins. Li X; Yang F; Wong JXH; Yu HZ Anal Chem; 2017 Sep; 89(17):8908-8916. PubMed ID: 28719742 [TBL] [Abstract][Full Text] [Related]
23. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Sadia M; Sośnicka A; Arafat B; Isreb A; Ahmed W; Kelarakis A; Alhnan MA Int J Pharm; 2016 Nov; 513(1-2):659-668. PubMed ID: 27640246 [TBL] [Abstract][Full Text] [Related]
24. Handheld and 'Turnkey' 3D printed paper-microfluidic viscometer with on-board microcontroller for smartphone based biosensing applications. Puneeth SB; Goel S Anal Chim Acta; 2021 Apr; 1153():338303. PubMed ID: 33714437 [TBL] [Abstract][Full Text] [Related]
26. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications. Salentijn GI; Oomen PE; Grajewski M; Verpoorte E Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294 [TBL] [Abstract][Full Text] [Related]
27. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Alhijjaj M; Belton P; Qi S Eur J Pharm Biopharm; 2016 Nov; 108():111-125. PubMed ID: 27594210 [TBL] [Abstract][Full Text] [Related]
28. Visible and near-infrared absorption spectroscopy by an integrating sphere and optical fibers for quantifying and discriminating the adulteration of extra virgin olive oil from Tuscany. Mignani AG; Ciaccheri L; Ottevaere H; Thienpont H; Conte L; Marega M; Cichelli A; Attilio C; Cimato A Anal Bioanal Chem; 2011 Jan; 399(3):1315-24. PubMed ID: 21107823 [TBL] [Abstract][Full Text] [Related]
29. Fused-filament 3D printing (3DP) for fabrication of tablets. Goyanes A; Buanz AB; Basit AW; Gaisford S Int J Pharm; 2014 Dec; 476(1-2):88-92. PubMed ID: 25275937 [TBL] [Abstract][Full Text] [Related]
30. Potential for Natural Fiber Reinforcement in PLA Polymer Filaments for Fused Deposition Modeling (FDM) Additive Manufacturing: A Review. Lee CH; Padzil FNBM; Lee SH; Ainun ZMA; Abdullah LC Polymers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925266 [TBL] [Abstract][Full Text] [Related]
31. 3D Printing Technology in Design of Pharmaceutical Products. Ameeduzzafar ; Alruwaili NK; Rizwanullah M; Abbas Bukhari SN; Amir M; Ahmed MM; Fazil M Curr Pharm Des; 2018; 24(42):5009-5018. PubMed ID: 30652636 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Skowyra J; Pietrzak K; Alhnan MA Eur J Pharm Sci; 2015 Feb; 68():11-7. PubMed ID: 25460545 [TBL] [Abstract][Full Text] [Related]
33. Novel method for manufacturing optical fiber: extrusion and drawing of microstructured polymer optical fibers from a 3D printer. Talataisong W; Ismaeel R; Sandoghchi SR; Rutirawut T; Topley G; Beresna M; Brambilla G Opt Express; 2018 Nov; 26(24):32007-32013. PubMed ID: 30650779 [TBL] [Abstract][Full Text] [Related]
34. Characterization of Ultrafine Particles and VOCs Emitted from a 3D Printer. Bernatikova S; Dudacek A; Prichystalova R; Klecka V; Kocurkova L Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33494483 [TBL] [Abstract][Full Text] [Related]
35. The Development of Biomimetic Aligned Skeletal Muscles in a Fully 3D Printed Microfluidic Device. Abdalkader R; Konishi S; Fujita T Biomimetics (Basel); 2021 Dec; 7(1):. PubMed ID: 35076457 [TBL] [Abstract][Full Text] [Related]
36. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling. Fafenrot S; Grimmelsmann N; Wortmann M; Ehrmann A Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29048347 [TBL] [Abstract][Full Text] [Related]
37. Hot Melt Extrusion and its Application in 3D Printing of Pharmaceuticals. Deshkar S; Rathi M; Zambad S; Gandhi K Curr Drug Deliv; 2021; 18(4):387-407. PubMed ID: 33176646 [TBL] [Abstract][Full Text] [Related]
38. Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer. Vallejos Baier R; Contreras Raggio JI; Toro Arancibia C; Bustamante M; Pérez L; Burda I; Aiyangar A; Vivanco JF Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111945. PubMed ID: 33812577 [TBL] [Abstract][Full Text] [Related]
39. Three-Dimensional Paper-Based Microfluidic Analysis Device for Simultaneous Detection of Multiple Biomarkers with a Smartphone. Baek SH; Park C; Jeon J; Park S Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33233440 [TBL] [Abstract][Full Text] [Related]
40. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Korte C; Quodbach J Pharm Dev Technol; 2018 Dec; 23(10):1117-1127. PubMed ID: 29368974 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]