BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35200331)

  • 1. Detection of Liver Dysfunction Using a Wearable Electronic Nose System Based on Semiconductor Metal Oxide Sensors.
    Voss A; Schroeder R; Schulz S; Haueisen J; Vogler S; Horn P; Stallmach A; Reuken P
    Biosensors (Basel); 2022 Jan; 12(2):. PubMed ID: 35200331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming the slow recovery of MOX gas sensors through a system modeling approach.
    Monroy JG; González-Jiménez J; Blanco JL
    Sensors (Basel); 2012 Oct; 12(10):13664-80. PubMed ID: 23202015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Online breath analysis using metal oxide semiconductor sensors (electronic nose) for diagnosis of lung cancer.
    Kononov A; Korotetsky B; Jahatspanian I; Gubal A; Vasiliev A; Arsenjev A; Nefedov A; Barchuk A; Gorbunov I; Kozyrev K; Rassadina A; Iakovleva E; Sillanpää M; Safaei Z; Ivanenko N; Stolyarova N; Chuchina V; Ganeev A
    J Breath Res; 2019 Oct; 14(1):016004. PubMed ID: 31505480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors.
    Palacín J; Rubies E; Clotet E; Martínez D
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Innovative Modular eNose System Based on a Unique Combination of Analog and Digital Metal Oxide Sensors.
    Jaeschke C; Glöckler J; El Azizi O; Gonzalez O; Padilla M; Mitrovics J; Mizaikoff B
    ACS Sens; 2019 Sep; 4(9):2277-2281. PubMed ID: 31389228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue.
    Zaim O; Diouf A; El Bari N; Lagdali N; Benelbarhdadi I; Ajana FZ; Llobet E; Bouchikhi B
    Anal Chim Acta; 2021 Nov; 1184():339028. PubMed ID: 34625262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Multi-Chamber Electronic Nose--an improved olfaction sensor for mobile robotics.
    Gonzalez-Jimenez J; Monroy JG; Blanco JL
    Sensors (Basel); 2011; 11(6):6145-64. PubMed ID: 22163947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A customized metal oxide semiconductor-based gas sensor array for onion quality evaluation: system development and characterization.
    Konduru T; Rains GC; Li C
    Sensors (Basel); 2015 Jan; 15(1):1252-73. PubMed ID: 25587975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-oxide-semiconductor resistive gas sensors for fish freshness detection.
    Wu K; Debliquy M; Zhang C
    Compr Rev Food Sci Food Saf; 2023 Mar; 22(2):913-945. PubMed ID: 36537904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal oxide semi-conductor gas sensors in environmental monitoring.
    Fine GF; Cavanagh LM; Afonja A; Binions R
    Sensors (Basel); 2010; 10(6):5469-502. PubMed ID: 22219672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose detection in human sweat using an electronic nose.
    Olarte O; Chilo J; Pelegri-Sebastia J; Barbé K; Van Moer W
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1462-5. PubMed ID: 24109974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolving Fast Gas Transients with Metal Oxide Sensors.
    Drix D; Schmuker M
    ACS Sens; 2021 Mar; 6(3):688-692. PubMed ID: 33524259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas Identification by a Single Metal-Oxide-Semiconductor Sensor Assisted by Ultrasound.
    Su S; Hu J
    ACS Sens; 2019 Sep; 4(9):2491-2496. PubMed ID: 31392885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal Sensor Selection for Classifying a Set of Ginsengs Using Metal-Oxide Sensors.
    Miao J; Zhang T; Wang Y; Li G
    Sensors (Basel); 2015 Jul; 15(7):16027-39. PubMed ID: 26151212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-Low-Power E-Nose System Based on Multi-Micro-LED-Integrated, Nanostructured Gas Sensors and Deep Learning.
    Lee K; Cho I; Kang M; Jeong J; Choi M; Woo KY; Yoon KJ; Cho YH; Park I
    ACS Nano; 2023 Jan; 17(1):539-551. PubMed ID: 36534781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wearable Electronic Tongue for Non-Invasive Assessment of Human Sweat.
    Falk M; Nilsson EJ; Cirovic S; Tudosoiu B; Shleev S
    Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm.
    Kang M; Cho I; Park J; Jeong J; Lee K; Lee B; Del Orbe Henriquez D; Yoon K; Park I
    ACS Sens; 2022 Feb; 7(2):430-440. PubMed ID: 35041384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancements in Improving Selectivity of Metal Oxide Semiconductor Gas Sensors Opening New Perspectives for Their Application in Food Industry.
    Wawrzyniak J
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic nose and wireless sensor network for environmental monitoring application in pulp and paper industry: a review.
    Prasad P; Raut P; Goel S; Barnwal RP; Bodhe GL
    Environ Monit Assess; 2022 Oct; 194(12):855. PubMed ID: 36207610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalized Modeling Framework of Metal Oxide-Based Non-Enzymatic Glucose Sensors: Concepts, Methods, and Challenges.
    Jin X; Alam MA
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):679-687. PubMed ID: 31150330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.