These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35200364)

  • 1. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties.
    Zhang Y; Murakami K; Borra VJ; Ozen MO; Demirci U; Nakamura T; Esfandiari L
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes.
    Shi L; Esfandiari L
    PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles.
    Shi L; Esfandiari L
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33374467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells.
    Kilic T; Valinhas ATS; Wall I; Renaud P; Carrara S
    Sci Rep; 2018 Jun; 8(1):9402. PubMed ID: 29925885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, characterisation and detection of breath-derived extracellular vesicles.
    Dobhal G; Datta A; Ayupova D; Teesdale-Spittle P; Goreham RV
    Sci Rep; 2020 Oct; 10(1):17381. PubMed ID: 33060613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype.
    Turcan I; Caras I; Schreiner TG; Tucureanu C; Salageanu A; Vasile V; Avram M; Tincu B; Olariu MA
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation.
    Mol EA; Goumans MJ; Doevendans PA; Sluijter JPG; Vader P
    Nanomedicine; 2017 Aug; 13(6):2061-2065. PubMed ID: 28365418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free characterization and real-time monitoring of cell uptake of extracellular vesicles.
    Koponen A; Kerkelä E; Rojalin T; Lázaro-Ibáñez E; Suutari T; Saari HO; Siljander P; Yliperttula M; Laitinen S; Viitala T
    Biosens Bioelectron; 2020 Nov; 168():112510. PubMed ID: 32877783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication.
    Tong M; Kleffmann T; Pradhan S; Johansson CL; DeSousa J; Stone PR; James JL; Chen Q; Chamley LW
    Hum Reprod; 2016 Apr; 31(4):687-99. PubMed ID: 26839151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy.
    Lee W; Nanou A; Rikkert L; Coumans FAW; Otto C; Terstappen LWMM; Offerhaus HL
    Anal Chem; 2018 Oct; 90(19):11290-11296. PubMed ID: 30157378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device.
    Sharma M; Sheth M; Poling HM; Kuhnell D; Langevin SM; Esfandiari L
    Sci Rep; 2023 Oct; 13(1):18293. PubMed ID: 37880299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionally engineered extracellular vesicles improve bone regeneration.
    Huang CC; Kang M; Lu Y; Shirazi S; Diaz JI; Cooper LF; Gajendrareddy P; Ravindran S
    Acta Biomater; 2020 Jun; 109():182-194. PubMed ID: 32305445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process.
    Qin YF; Lu XY; Shi Z; Huang QS; Wang X; Ren B; Cui L
    Anal Chem; 2022 Sep; 94(36):12416-12426. PubMed ID: 36029235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies.
    Lorenzo MF; Bhonsle SP; Arena CB; Davalos RV
    IEEE Trans Biomed Eng; 2021 May; 68(5):1536-1546. PubMed ID: 33156779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags.
    Zhang W; Jiang L; Diefenbach RJ; Campbell DH; Walsh BJ; Packer NH; Wang Y
    ACS Sens; 2020 Mar; 5(3):764-771. PubMed ID: 32134252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalization strategies of extracellular vesicles.
    Rayamajhi S; Aryal S
    J Mater Chem B; 2020 Jun; 8(21):4552-4569. PubMed ID: 32377649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed Affinity Measurements of Extracellular Vesicles Binding Kinetics.
    Chiodi E; Daaboul GG; Marn AM; Ünlü MS
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in extracellular vesicles analysis.
    Vinaiphat A; Sze SK
    Adv Clin Chem; 2020; 97():73-116. PubMed ID: 32448435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.