BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 35200364)

  • 1. A Label-Free Electrical Impedance Spectroscopy for Detection of Clusters of Extracellular Vesicles Based on Their Unique Dielectric Properties.
    Zhang Y; Murakami K; Borra VJ; Ozen MO; Demirci U; Nakamura T; Esfandiari L
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes.
    Shi L; Esfandiari L
    PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Electrokinetically-Driven Microchip for Rapid Entrapment and Detection of Nanovesicles.
    Shi L; Esfandiari L
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33374467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells.
    Kilic T; Valinhas ATS; Wall I; Renaud P; Carrara S
    Sci Rep; 2018 Jun; 8(1):9402. PubMed ID: 29925885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, characterisation and detection of breath-derived extracellular vesicles.
    Dobhal G; Datta A; Ayupova D; Teesdale-Spittle P; Goreham RV
    Sci Rep; 2020 Oct; 10(1):17381. PubMed ID: 33060613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype.
    Turcan I; Caras I; Schreiner TG; Tucureanu C; Salageanu A; Vasile V; Avram M; Tincu B; Olariu MA
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation.
    Mol EA; Goumans MJ; Doevendans PA; Sluijter JPG; Vader P
    Nanomedicine; 2017 Aug; 13(6):2061-2065. PubMed ID: 28365418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free characterization and real-time monitoring of cell uptake of extracellular vesicles.
    Koponen A; Kerkelä E; Rojalin T; Lázaro-Ibáñez E; Suutari T; Saari HO; Siljander P; Yliperttula M; Laitinen S; Viitala T
    Biosens Bioelectron; 2020 Nov; 168():112510. PubMed ID: 32877783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic characterization of macro-, micro- and nano-extracellular vesicles derived from the same first trimester placenta: relevance for feto-maternal communication.
    Tong M; Kleffmann T; Pradhan S; Johansson CL; DeSousa J; Stone PR; James JL; Chen Q; Chamley LW
    Hum Reprod; 2016 Apr; 31(4):687-99. PubMed ID: 26839151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-Free Prostate Cancer Detection by Characterization of Extracellular Vesicles Using Raman Spectroscopy.
    Lee W; Nanou A; Rikkert L; Coumans FAW; Otto C; Terstappen LWMM; Offerhaus HL
    Anal Chem; 2018 Oct; 90(19):11290-11296. PubMed ID: 30157378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device.
    Sharma M; Sheth M; Poling HM; Kuhnell D; Langevin SM; Esfandiari L
    Sci Rep; 2023 Oct; 13(1):18293. PubMed ID: 37880299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionally engineered extracellular vesicles improve bone regeneration.
    Huang CC; Kang M; Lu Y; Shirazi S; Diaz JI; Cooper LF; Gajendrareddy P; Ravindran S
    Acta Biomater; 2020 Jun; 109():182-194. PubMed ID: 32305445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Enabled Raman Spectroscopic Identification of Pathogen-Derived Extracellular Vesicles and the Biogenesis Process.
    Qin YF; Lu XY; Shi Z; Huang QS; Wang X; Ren B; Cui L
    Anal Chem; 2022 Sep; 94(36):12416-12426. PubMed ID: 36029235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Impedance Spectroscopy for Monitoring Tissue Impedance, Temperature, and Treatment Outcome During Electroporation-Based Therapies.
    Lorenzo MF; Bhonsle SP; Arena CB; Davalos RV
    IEEE Trans Biomed Eng; 2021 May; 68(5):1536-1546. PubMed ID: 33156779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags.
    Zhang W; Jiang L; Diefenbach RJ; Campbell DH; Walsh BJ; Packer NH; Wang Y
    ACS Sens; 2020 Mar; 5(3):764-771. PubMed ID: 32134252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalization strategies of extracellular vesicles.
    Rayamajhi S; Aryal S
    J Mater Chem B; 2020 Jun; 8(21):4552-4569. PubMed ID: 32377649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed Affinity Measurements of Extracellular Vesicles Binding Kinetics.
    Chiodi E; Daaboul GG; Marn AM; Ünlü MS
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33918613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in extracellular vesicles analysis.
    Vinaiphat A; Sze SK
    Adv Clin Chem; 2020; 97():73-116. PubMed ID: 32448435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.