These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
418 related articles for article (PubMed ID: 35200427)
21. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993 [TBL] [Abstract][Full Text] [Related]
22. Innovative biomaterials for food packaging: Unlocking the potential of polyhydroxyalkanoate (PHA) biopolymers. Yeo JCC; Muiruri JK; Fei X; Wang T; Zhang X; Xiao Y; Thitsartarn W; Tanoto H; He C; Li Z Biomater Adv; 2024 Oct; 163():213929. PubMed ID: 39024863 [TBL] [Abstract][Full Text] [Related]
23. A review on poly(3-hydroxybutyrate- Tang HJ; Neoh SZ; Sudesh K Front Bioeng Biotechnol; 2022; 10():1057067. PubMed ID: 36545679 [TBL] [Abstract][Full Text] [Related]
24. Binary polyhydroxyalkanoate systems for soft tissue engineering. Lukasiewicz B; Basnett P; Nigmatullin R; Matharu R; Knowles JC; Roy I Acta Biomater; 2018 Apr; 71():225-234. PubMed ID: 29501818 [TBL] [Abstract][Full Text] [Related]
25. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172 [TBL] [Abstract][Full Text] [Related]
26. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates. Albuquerque PBS; Malafaia CB Int J Biol Macromol; 2018 Feb; 107(Pt A):615-625. PubMed ID: 28916381 [TBL] [Abstract][Full Text] [Related]
27. Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. Ali Z; Abdullah M; Yasin MT; Amanat K; Ahmad K; Ahmed I; Qaisrani MM; Khan J Environ Res; 2024 Mar; 244():117949. PubMed ID: 38109961 [TBL] [Abstract][Full Text] [Related]
28. Fed-Batch Synthesis of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate) from Sucrose and 4-Hydroxybutyrate Precursors by Burkholderia sacchari Strain DSM 17165. Miranda De Sousa Dias M; Koller M; Puppi D; Morelli A; Chiellini F; Braunegg G Bioengineering (Basel); 2017 Apr; 4(2):. PubMed ID: 28952515 [TBL] [Abstract][Full Text] [Related]
29. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. Amadu AA; Qiu S; Ge S; Addico GND; Ameka GK; Yu Z; Xia W; Abbew AW; Shao D; Champagne P; Wang S Sci Total Environ; 2021 Feb; 756():143729. PubMed ID: 33310224 [TBL] [Abstract][Full Text] [Related]
30. Advances in Microbial Biotechnology for Sustainable Alternatives to Petroleum-Based Plastics: A Comprehensive Review of Polyhydroxyalkanoate Production. González-Rojo S; Paniagua-García AI; Díez-Antolínez R Microorganisms; 2024 Aug; 12(8):. PubMed ID: 39203509 [TBL] [Abstract][Full Text] [Related]
31. Halomonas alkaliantarctica as a platform for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from biodiesel-derived glycerol. Możejko-Ciesielska J; Moraczewski K; Czaplicki S Environ Microbiol Rep; 2024 Feb; 16(1):e13225. PubMed ID: 38146695 [TBL] [Abstract][Full Text] [Related]
32. Agro waste as a potential carbon feedstock for poly-3-hydroxy alkanoates production: Commercialization potential and technical hurdles. Ding Z; Kumar V; Sar T; Harirchi S; Dregulo AM; Sirohi R; Sindhu R; Binod P; Liu X; Zhang Z; Taherzadeh MJ; Awasthi MK Bioresour Technol; 2022 Nov; 364():128058. PubMed ID: 36191751 [TBL] [Abstract][Full Text] [Related]
33. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review. Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S Biotechnol Genet Eng Rev; 2023 Oct; 39(2):897-936. PubMed ID: 36641590 [TBL] [Abstract][Full Text] [Related]
34. Production of polyhydroxyalkanoates using dairy processing waste - A review. Dutt Tripathi A; Paul V; Agarwal A; Sharma R; Hashempour-Baltork F; Rashidi L; Khosravi Darani K Bioresour Technol; 2021 Apr; 326():124735. PubMed ID: 33508643 [TBL] [Abstract][Full Text] [Related]
36. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review. Yoon J; Oh MK Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907 [TBL] [Abstract][Full Text] [Related]
37. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. Leong YK; Show PL; Ooi CW; Ling TC; Lan JC J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847 [TBL] [Abstract][Full Text] [Related]
38. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Cha D; Ha HS; Lee SK Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015 [TBL] [Abstract][Full Text] [Related]
39. Polyhydroxybutyrate synthesis in Camelina: Towards coproduction of renewable feedstocks for bioplastics and fuels. Malik MR; Patterson N; Sharma N; Tang J; Burkitt C; Ji Y; Martino M; Hertig A; Schweitzer D; Peoples O; Snell KD Plant Biotechnol J; 2023 Dec; 21(12):2671-2682. PubMed ID: 37610031 [TBL] [Abstract][Full Text] [Related]
40. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. Kaniuk Ł; Stachewicz U ACS Biomater Sci Eng; 2021 Dec; 7(12):5339-5362. PubMed ID: 34649426 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]