BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 35200514)

  • 1. Using Rheology to Understand Transient and Dynamic Gels.
    Bianco S; Panja S; Adams DJ
    Gels; 2022 Feb; 8(2):. PubMed ID: 35200514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation.
    Copetti G; Grassi M; Lapasin R; Pricl S
    Glycoconj J; 1997 Dec; 14(8):951-61. PubMed ID: 9486428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of ionic liquid on sol-gel phase transition, kinetics and rheological properties of high amylose starch.
    Devi LS; Das AB
    Int J Biol Macromol; 2020 Nov; 162():685-692. PubMed ID: 32585271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gel--sol transition in kappa-carrageenan systems: microviscosity of hydrophobic microdomains, dynamic rheology and molecular conformation.
    Hugerth A; Nilsson S; Sundelöf LO
    Int J Biol Macromol; 1999 Oct; 26(1):69-76. PubMed ID: 10520958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition.
    Tran-Ba KH; Lee DJ; Zhu J; Paeng K; Kaufman LJ
    Biophys J; 2017 Oct; 113(8):1882-1892. PubMed ID: 29045881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological characteristics of binary composite gels of wheat flour and high amylose corn starch.
    Shahsavani Mojarrad L; Rafe A
    J Texture Stud; 2018 Jun; 49(3):320-327. PubMed ID: 28963723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of processing conditions on the texture and rheological properties of model acid gels and cream cheese.
    Brighenti M; Govindasamy-Lucey S; Jaeggi JJ; Johnson ME; Lucey JA
    J Dairy Sci; 2018 Aug; 101(8):6762-6775. PubMed ID: 29753471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological and micro-Raman time-series characterization of enzyme sol-gel solution toward morphological control of electrospun fibers.
    Oriero DA; Weakley AT; Aston DE
    Sci Technol Adv Mater; 2012 Apr; 13(2):025008. PubMed ID: 27877486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of κ/ι-hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation.
    Torres MD; Chenlo F; Moreira R
    Int J Biol Macromol; 2016 May; 86():418-24. PubMed ID: 26827757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives.
    Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T
    Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring macrocycles in functional supramolecular gels: from stimuli responsiveness to systems chemistry.
    Qi Z; Schalley CA
    Acc Chem Res; 2014 Jul; 47(7):2222-33. PubMed ID: 24937365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of oleic acid on the rheology and in vitro release of lumiracoxib from poloxamer gels.
    Moreira TS; de Sousa VP; Pierre MB
    J Pharm Pharm Sci; 2010; 13(2):286-302. PubMed ID: 20816013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions.
    Chung YM; Simmons KL; Gutowska A; Jeong B
    Biomacromolecules; 2002; 3(3):511-6. PubMed ID: 12005522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow properties of N-(carboxymethyl) chitosan aqueous systems in the sol and gel domains.
    Delben F; Lapasin R; Pricl S
    Int J Biol Macromol; 1990 Feb; 12(1):9-13. PubMed ID: 2083244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use.
    Edsman K; Carlfors J; Petersson R
    Eur J Pharm Sci; 1998 Apr; 6(2):105-12. PubMed ID: 9795025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined rheological and ultrasonic study of alginate and pectin gels near the sol-gel transition.
    Audebrand M; Kolb M; Axelos MA
    Biomacromolecules; 2006 Oct; 7(10):2811-7. PubMed ID: 17025357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of sucrose on the sol-gel phase transition and viscoelastic properties of potato starch solutions.
    Owczarz P; Orczykowska M; Rył A; Ziółkowski P
    Food Chem; 2019 Jan; 271():94-101. PubMed ID: 30236747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hydrophobic modification on rheological and swelling features during chemical gelation of aqueous polysaccharides.
    Silioc C; Maleki A; Zhu K; Kjøniksen AL; Nyström B
    Biomacromolecules; 2007 Feb; 8(2):719-28. PubMed ID: 17291098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of silicon sol-gel technology to forensic blood substitute development: Mimicking aspects of whole human blood rheology.
    Stotesbury T; Illes M; Wilson P; Vreugdenhil AJ
    Forensic Sci Int; 2017 Jan; 270():12-19. PubMed ID: 27889443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.