These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 35200796)

  • 1. Numerical simulation of a large area scintillometer and laser differential image motion monitor.
    Brown DM; Hanna RT; Brown AM; Hixson JG; Baldwin KC
    Appl Opt; 2022 Jan; 61(1):10-21. PubMed ID: 35200796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring atmospheric turbulence along folded paths using a laser-illuminated differential image motion monitor.
    Hanna R; Brown DM; Brown A; Baldwin K
    Appl Opt; 2022 Nov; 61(32):9646-9653. PubMed ID: 36606905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instrument comparison: corrected stellar scintillometer versus isoplanometer.
    Krause-Polstorff J; Murphy EA; Walters DL
    Appl Opt; 1993 Jul; 32(21):4051-7. PubMed ID: 20830046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical turbulence profiling at the Table Mountain Facility with the Laser Communication Relay Demonstration GEO downlink.
    Birch M; Piazzolla S; Hooser P; Bennet F; Travouillon T; Buehlman W
    Opt Express; 2024 Jun; 32(12):21962-21976. PubMed ID: 38859537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser differential image-motion monitor for characterization of turbulence during free-space optical communication tests.
    Brown DM; Juarez JC; Brown AM
    Appl Opt; 2013 Dec; 52(34):8402-10. PubMed ID: 24513845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric coherence time measurement by four-aperture DIMM defocus velocity technique.
    Panahi M; Shomali R; Mollabashi M; Rasouli S
    Appl Opt; 2019 Nov; 58(31):8673-8679. PubMed ID: 31873347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fine calibration of large-aperture optical scintillometers and an optical estimate of inner scale of turbulence.
    Hill RJ; Ochs GR
    Appl Opt; 1978 Nov; 17(22):3608-12. PubMed ID: 20204039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of a 4-aperture DIMM instrument for atmospheric coherence time estimation: an analytical development.
    Panahi M; Shomali R; Mollabashi M
    J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):655-664. PubMed ID: 31044987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercomparison of flux-, gradient-, and variance-based optical turbulence (
    Pierzyna M; Hartogensis O; Basu S; Saathof R
    Appl Opt; 2024 Jun; 63(16):E107-E119. PubMed ID: 38856605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the propagation path in moderate to strong optical turbulence.
    Vetelino FS; Clare B; Corbett K; Young C; Grant K; Andrews L
    Appl Opt; 2006 May; 45(15):3534-43. PubMed ID: 16708099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-accuracy differential image motion monitor measurements for the Thirty Meter Telescope site testing program.
    Wang L; Schöck M; Chanan G; Skidmore W; Blum R; Bustos E; Els S; Riddle R; Seguel J; Travouillon T; Vasquez J; Walker D; Gillett P
    Appl Opt; 2007 Sep; 46(25):6460-8. PubMed ID: 17805388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculating structure function constant from measured C
    Beason M; Andrews L; Toselli I
    Appl Opt; 2019 Sep; 58(25):6813-6819. PubMed ID: 31503651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path.
    Tunick A
    Opt Express; 2008 Sep; 16(19):14645-54. PubMed ID: 18795001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulence strength estimation from an arbitrary set of atmospherically degraded images.
    Zamek S; Yitzhaky Y
    J Opt Soc Am A Opt Image Sci Vis; 2006 Dec; 23(12):3106-13. PubMed ID: 17106465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Path-averaged Cn2 estimation using a laser-and-corner-cube system.
    Cole WP; Marciniak MA
    Appl Opt; 2009 Jul; 48(21):4256-62. PubMed ID: 19623240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave optics simulation of atmospheric turbulence and reflective speckle effects in CO2 lidar.
    Nelson DH; Walters DL; Mackerrow EP; Schmitt MJ; Quick CR; Porch WM; Petrin RR
    Appl Opt; 2000 Apr; 39(12):1857-71. PubMed ID: 18345082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical analysis of optical turbulence intensity over a 2.33 km propagation path.
    Tunick A
    Opt Express; 2007 Apr; 15(7):3619-28. PubMed ID: 19532606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of saturation on the optical scintillometer.
    Frehlich RG; Ochs GR
    Appl Opt; 1990 Feb; 29(4):548-53. PubMed ID: 20556145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-surface atmospheric turbulence profile measuring technology based on an airship-mounted laser communication system.
    Wang T; Zhao X; Song Y; Wang J; Luan Y; Li Y; Chang S
    Appl Opt; 2022 Jan; 61(2):439-445. PubMed ID: 35200881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refractive turbulence profiling using an orbiting light source.
    Krause-Polstorff J; Walters D
    Appl Opt; 1990 May; 29(13):1877-85. PubMed ID: 20563104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.