These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35200871)

  • 21. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture.
    Shen X; Sun B; Liu D; Lee ST
    J Am Chem Soc; 2011 Dec; 133(48):19408-15. PubMed ID: 22035274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solution Processed Organic/Silicon Nanowires Hybrid Heterojunction Solar Cells Using Organosilane Incorporated Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Hole Transport Layers.
    Shen R; Sun Z; Shi Y; Zhou Y; Guo W; Zhou Y; Yan H; Liu F
    ACS Nano; 2021 Apr; 15(4):6296-6304. PubMed ID: 33661604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light Trapping of Inclined Si Nanowires for Efficient Inorganic/Organic Hybrid Solar Cells.
    Chen SH; Kuo KY; Tsai KH; Chen CY
    Nanomaterials (Basel); 2022 May; 12(11):. PubMed ID: 35683679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells.
    Lee YJ; Yao YC; Yang CH
    Opt Express; 2013 Jan; 21 Suppl 1():A7-14. PubMed ID: 23389277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A strong antireflective solar cell prepared by tapering silicon nanowires.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Lee JH
    Opt Express; 2010 Sep; 18 Suppl 3():A286-92. PubMed ID: 21165058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polymer-free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage.
    Kim HJ; Lee J; Lee SE; Kim W; Kim HJ; Choi DG; Park JH
    ChemSusChem; 2013 Nov; 6(11):2144-8. PubMed ID: 24039099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating.
    Chen K; Zheng N; Wu S; He J; Yu Y; Zheng H
    Appl Opt; 2021 Nov; 60(33):10312-10321. PubMed ID: 34807039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Theoretical and Simulation Analysis of the Sensitivity of SiNWs-FET Sensors.
    Yang Y; Lu Z; Liu D; Wang Y; Chen S; Li T
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33920811
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance.
    Liang Z; Su M; Wang H; Gong Y; Xie F; Gong L; Meng H; Liu P; Chen H; Xie W; Chen J
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5830-6. PubMed ID: 25711433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-trapping schemes for silicon thin-film solar cells via super-quadratic subwavelength gratings.
    Chen K; Wu R; Zheng H; Wang H; Zhang G; Chen S
    Appl Opt; 2019 Nov; 58(31):8702-8712. PubMed ID: 31873351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural and photoluminescence properties of silicon nanowires extracted by means of a centrifugation process from plasma torch synthesized silicon nanopowder.
    Le Borgne V; Agati M; Boninelli S; Castrucci P; De Crescenzi M; Dolbec R; El Khakani MA
    Nanotechnology; 2017 Jul; 28(28):285702. PubMed ID: 28585522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires.
    Naffeti M; Postigo PA; Chtourou R; Zaïbi MA
    Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32106503
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry.
    Gonchar KA; Zubairova AA; Schleusener A; Osminkina LA; Sivakov V
    Nanoscale Res Lett; 2016 Dec; 11(1):357. PubMed ID: 27506530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advanced radial junction thin film photovoltaics and detectors built on standing silicon nanowires.
    Zhang T; Wang J; Yu L; Xu J; Roca I Cabarrocas P
    Nanotechnology; 2019 Jul; 30(30):302001. PubMed ID: 30849766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silicon Suboxides as Driving Force for Efficient Light-Enhanced Hydrogen Generation on Silicon Nanowires.
    Ming T; Turishchev S; Schleusener A; Parinova E; Koyuda D; Chuvenkova O; Schulz M; Dietzek B; Sivakov V
    Small; 2021 Feb; 17(8):e2007650. PubMed ID: 33522106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon@Tellurium Nanostructures Anchored to a Si Nanowire Scaffold with an Unprecedented Liquid-Junction Solar Cell Performance.
    Kolay A; Maity D; Ghosal P; Deepa M
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):47972-47983. PubMed ID: 31845584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Large-area silicon nanowires from silicon monoxide for solar cell applications.
    Zhang ML; Mahmood I; Fan X; Xu G; Wong NB
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8271-7. PubMed ID: 21121327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching.
    Zhang S; Wang X; Liu H; Shen W
    Nanotechnology; 2014 Jan; 25(2):025602. PubMed ID: 24334462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.
    Wang J; Wang H; Prakoso AB; Togonal AS; Hong L; Jiang C; Rusli
    Nanoscale; 2015 Mar; 7(10):4559-65. PubMed ID: 25686737
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significant enhancement of hole mobility in [110] silicon nanowires compared to electrons and bulk silicon.
    Buin AK; Verma A; Svizhenko A; Anantram MP
    Nano Lett; 2008 Feb; 8(2):760-5. PubMed ID: 18205425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.