BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35200886)

  • 21. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel.
    Lukina MM; Dudenkova VV; Ignatova NI; Druzhkova IN; Shimolina LE; Zagaynova EV; Shirmanova MV
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1693-1700. PubMed ID: 29719197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential Indexing of the Invasiveness of Breast Cancer Cells by Mitochondrial Redox Ratios.
    Sun N; Xu HN; Luo Q; Li LZ
    Adv Exp Med Biol; 2016; 923():121-127. PubMed ID: 27526133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH dependence of the fluorescence lifetime of FAD in solution and in cells.
    Islam MS; Honma M; Nakabayashi T; Kinjo M; Ohta N
    Int J Mol Sci; 2013 Jan; 14(1):1952-63. PubMed ID: 23334475
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM.
    Wallrabe H; Svindrych Z; Alam SR; Siller KH; Wang T; Kashatus D; Hu S; Periasamy A
    Sci Rep; 2018 Jan; 8(1):79. PubMed ID: 29311591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of Mitochondrial Metabolic Response to Doxorubicin in Prostate Cancer Cells: An NADH, FAD and Tryptophan FLIM Assay.
    Alam SR; Wallrabe H; Svindrych Z; Chaudhary AK; Christopher KG; Chandra D; Periasamy A
    Sci Rep; 2017 Sep; 7(1):10451. PubMed ID: 28874842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response.
    Gil DA; Deming D; Skala MC
    J Biomed Opt; 2021 Mar; 26(3):. PubMed ID: 33754540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of porphyrins in blue light suppression of Streptococcus agalactiae.
    Bumah VV; Morrow BN; Cortez PM; Bowman CR; Rojas P; Masson-Meyers DS; Suprapto J; Tong WG; Enwemeka CS
    J Photochem Photobiol B; 2020 Nov; 212():111996. PubMed ID: 32863128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of mitochondrial NADH and FAD autofluorescence in live cells.
    Bartolomé F; Abramov AY
    Methods Mol Biol; 2015; 1264():263-70. PubMed ID: 25631020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformational Change Near the Redox Center of Dihydrolipoamide Dehydrogenase Induced by NAD(+) to Regulate the Enzyme Activity.
    Fukamichi T; Nishimoto E
    J Fluoresc; 2015 May; 25(3):577-83. PubMed ID: 25757537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence spectroscopy as a biomarker in a cell culture and in a nonhuman primate model for ovarian cancer chemopreventive agents.
    Brewer M; Utzinger U; Li Y; Atkinson EN; Satterfield W; Auersperg N; Richards-Kortum R; Follen M; Bast R
    J Biomed Opt; 2002 Jan; 7(1):20-6. PubMed ID: 11818008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-labeling multiphoton excitation microscopy as a novel diagnostic tool for discriminating normal tissue and colorectal cancer lesions.
    Matsui T; Mizuno H; Sudo T; Kikuta J; Haraguchi N; Ikeda JI; Mizushima T; Yamamoto H; Morii E; Mori M; Ishii M
    Sci Rep; 2017 Jul; 7(1):6959. PubMed ID: 28761050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient incorporation of CoA, NAD and FAD into RNA by in vitro transcription.
    Huang F
    Nucleic Acids Res; 2003 Feb; 31(3):e8. PubMed ID: 12560511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies.
    Heikal AA
    Biomark Med; 2010 Apr; 4(2):241-63. PubMed ID: 20406068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Label-Free Fluorescence Spectroscopy for Detecting Key Biomolecules in Brain Tissue from a Mouse Model of Alzheimer's Disease.
    Shi L; Lu L; Harvey G; Harvey T; Rodríguez-Contreras A; Alfano RR
    Sci Rep; 2017 Jun; 7(1):2599. PubMed ID: 28572632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group.
    Miyawaki O; Wingard LB
    Biochim Biophys Acta; 1985 Jan; 838(1):60-8. PubMed ID: 3967047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multispectral Imaging of Metabolic Fluorophores: Comparing In Vivo and Fresh Ex Vivo Tissue.
    Carver GE; Locknar SA; Ghule PN; Pung CJ; Weaver DL; Stein JL; Stein GS
    Crit Rev Eukaryot Gene Expr; 2024; 34(1):69-74. PubMed ID: 37824393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.