These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35200966)

  • 1. Learning-based compensation of spatially varying aberrations for holographic display [Invited].
    Yoo D; Nam SW; Jo Y; Moon S; Lee CK; Lee B
    J Opt Soc Am A Opt Image Sci Vis; 2022 Feb; 39(2):A86-A92. PubMed ID: 35200966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerating a spatially varying aberration correction of holographic displays with low-rank approximation.
    Nam SW; Kim D; Lee B
    Opt Lett; 2022 Jul; 47(13):3175-3178. PubMed ID: 35776578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase dual-resolution networks for a computer-generated hologram.
    Yu T; Zhang S; Chen W; Liu J; Zhang X; Tian Z
    Opt Express; 2022 Jan; 30(2):2378-2389. PubMed ID: 35209379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation.
    Yeom HJ; Kim HJ; Kim SB; Zhang H; Li B; Ji YM; Kim SH; Park JH
    Opt Express; 2015 Dec; 23(25):32025-34. PubMed ID: 26698993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive deep learning model for 3D color holography.
    Yolalmaz A; YĆ¼ce E
    Sci Rep; 2022 Feb; 12(1):2487. PubMed ID: 35169161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compact reconstruction of a Fourier hologram for a 3D object by scaling compensation.
    Wang J; Zhang Y; Lei X; Wu Y
    Appl Opt; 2023 Apr; 62(10):2604-2609. PubMed ID: 37132817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display.
    Pan Y; Wang Y; Liu J; Li X; Jia J
    Appl Opt; 2013 Jan; 52(1):A290-9. PubMed ID: 23292405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning approach for the fast generation of acoustic holograms.
    Lin Q; Wang J; Cai F; Zhang R; Zhao D; Xia X; Wang J; Zheng H
    J Acoust Soc Am; 2021 Apr; 149(4):2312. PubMed ID: 33940859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast method for calculating a curved hologram in a holographic display.
    Kang R; Liu J; Pi D; Duan X
    Opt Express; 2020 Apr; 28(8):11290-11300. PubMed ID: 32403643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast hologram generation using intermediate angular-spectrum method for high-quality compact on-axis holographic display.
    Chen C; Chang K; Liu C; Wang J; Wang Q
    Opt Express; 2019 Sep; 27(20):29401-29414. PubMed ID: 31684675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.
    Betin AY; Bobrinev VI; Donchenko SS; Odinokov SB; Evtikhiev NN; Starikov RS; Starikov SN; Zlokazov EY
    Appl Opt; 2014 Oct; 53(28):6591-7. PubMed ID: 25322249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-compensation of an image blur in holographic projection display using light emitting diode light source.
    Askari M; Park JH
    Opt Express; 2020 Jan; 28(1):146-159. PubMed ID: 32118946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system.
    Yu H; Kim Y; Yang D; Seo W; Kim Y; Hong JY; Song H; Sung G; Sung Y; Min SW; Lee HS
    Nat Commun; 2023 Jun; 14(1):3534. PubMed ID: 37316495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.
    Nguyen T; Bui V; Lam V; Raub CB; Chang LC; Nehmetallah G
    Opt Express; 2017 Jun; 25(13):15043-15057. PubMed ID: 28788938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic aberration compensation for digital holographic microscopy based on bicubic downsampling and improved minimization of global phase gradients.
    Yang J; Li F; Du J; Yang F; Yu S; Chen Q; Wang J; Zhang X; Sun S; Yan W
    Opt Express; 2023 Oct; 31(22):36188-36201. PubMed ID: 38017773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-iterative phase hologram generation for color holographic display.
    Zhang C; Wu F; Zhou J; Wei S
    Opt Express; 2022 Jan; 30(1):195-209. PubMed ID: 35201199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lensless Scheme for Measuring Laser Aberrations Based on Computer-Generated Holograms.
    Krasin G; Kovalev M; Stsepuro N; Ruchka P; Odinokov S
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32748843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed computer-generated holography using an autoencoder-based deep neural network.
    Wu J; Liu K; Sui X; Cao L
    Opt Lett; 2021 Jun; 46(12):2908-2911. PubMed ID: 34129571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time layer-based computer-generated hologram calculation for the Fourier transform optical system.
    Gilles A; Gioia P
    Appl Opt; 2018 Oct; 57(29):8508-8517. PubMed ID: 30461916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. End-to-end real-time holographic display based on real-time capture of real scenes.
    Zhang S; Ma H; Yang Y; Zhao W; Liu J
    Opt Lett; 2023 Apr; 48(7):1850-1853. PubMed ID: 37221782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.