These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35200993)

  • 1. Imaging spectrum reconstruction of a spatial heterodyne imaging spectrometer.
    Ye S; Li Z; Zhang Y; Xiong W; Wang F; Wang X; Zhang W
    Appl Opt; 2022 Feb; 61(6):C13-C19. PubMed ID: 35200993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of invalid data based on spatial dimension information of a temporally and spatially modulated spatial heterodyne interference imaging spectrometer.
    Ding Y; Luo H; Shi H; Li Z; Han Y; Li S; Xiong W
    Appl Opt; 2021 Aug; 60(22):6614-6622. PubMed ID: 34612904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressing the Multiplex Disadvantage in Photon-Noise Limited Interferometry Using Cross-Dispersed Spatial Heterodyne Spectrometry.
    Egan MJ; Colón AM; Angel SM; Sharma SK
    Appl Spectrosc; 2021 Feb; 75(2):208-215. PubMed ID: 32662290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of spatial heterodyne spectroscopy for polarization measurement.
    Li S; Luo H; Li Z; Ding Y; Wang Q; Wei X
    Appl Opt; 2023 Mar; 62(9):2207-2217. PubMed ID: 37132858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [A Research on Filed-of-View (FOV) Widening and Thermal-Phase-Drift (TPD) Compensating Technology Applied in a Polarized Interference Imaging Spectrometer (PIIS)].
    Zhai Y; Xiao D; Li B; Zhu RH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3720-5. PubMed ID: 30226703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on a new method for instrumental line shape measurement of spatial heterodyne interference spectrometer].
    Xiong W; Shi HL; Yu NH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):267-71. PubMed ID: 25993862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of Influence of Pushroom Erros on The Data Reconstruction of Computational Imaging Spectrometer].
    Wang JW; Pei LL; Liu YY; Lü QB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jan; 36(1):268-72. PubMed ID: 27228780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical system design of a DMD-SHS combined modulation interference spectrometer.
    Wang Q; Luo H; Bai Y; Ding Y; Li Z; Xiong W
    Appl Opt; 2023 Mar; 62(8):2154-2160. PubMed ID: 37133105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Data processing for interferogram of spatial heterodyne spectrometer].
    Ye S; Xiong W; Qiao YL; Hong J; Fang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):848-52. PubMed ID: 19455841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperspectral Raman Imaging Using a Spatial Heterodyne Raman Spectrometer with a Microlens Array.
    Allen A; Waldron A; Ottaway JM; Chance Carter J; Michael Angel S
    Appl Spectrosc; 2020 Aug; 74(8):921-931. PubMed ID: 32031013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Monolithic Spatial Heterodyne Raman Spectrometer: Initial Tests.
    Waldron A; Allen A; Colón A; Carter JC; Angel SM
    Appl Spectrosc; 2021 Jan; 75(1):57-69. PubMed ID: 32495633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution ultraviolet imaging spectrometer for latent image analysis.
    Lyu H; Liao N; Li H; Wu W
    Opt Express; 2016 Mar; 24(6):6459-68. PubMed ID: 27136837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Heterodyne Raman Spectrometer (SHRS) for In Situ Chemical Sensing Using Sapphire and Silica Optical Fiber Raman Probes.
    Ottaway JM; Allen A; Waldron A; Paul PH; Angel SM; Carter JC
    Appl Spectrosc; 2019 Oct; 73(10):1160-1171. PubMed ID: 31397584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High Optical Throughput Spectral Imaging Technique Using Broadband Filters.
    Wang D; Chen Z; Zhang X; Fu T; OuYang R; Bi G; Jin L; Wang X
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of a multi-grating-based cross-dispersed spatial heterodyne spectrometer.
    Chu Q; Li X; Sun Y; Jirigalantu ; Sun C; Chen J; Li F; Bayanheshig
    Opt Express; 2023 May; 31(11):18190-18209. PubMed ID: 37381535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research on an Equal Wavelength Spectrum Reconstruction Method of Interference Imaging Spectrometer].
    Xie PY; Yang JF; Xue B; Lü J; He YH; Li T; Ma XL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):848-52. PubMed ID: 27400536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectrum Reconstruction of a Spatially Modulated Fourier Transform Spectrometer Based on Stepped Mirrors.
    Gao J; Liang Z; Liang J; Wang W; Lü J; Qin Y
    Appl Spectrosc; 2017 Jun; 71(6):1348-1356. PubMed ID: 27881724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopy using a spatial heterodyne spectrometer: proof of concept.
    Gomer NR; Gordon CM; Lucey P; Sharma SK; Carter JC; Angel SM
    Appl Spectrosc; 2011 Aug; 65(8):849-57. PubMed ID: 21819774
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.