These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 35201026)
1. Sensitive detection of radio-frequency field phase with interacting dark states in Rydberg atoms. Lin L; He Y; Yin Z; Li D; Jia Z; Zhao Y; Chen B; Peng Y Appl Opt; 2022 Feb; 61(6):1427-1433. PubMed ID: 35201026 [TBL] [Abstract][Full Text] [Related]
2. Microwave Electrometry with Multi-Photon Coherence in Rydberg Atoms. Yin Z; Li Q; Song X; Jia Z; Parniak M; Lu X; Peng Y Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631805 [TBL] [Abstract][Full Text] [Related]
3. Field Distortion and Optimization of a Vapor Cell in Rydberg Atom-Based Radio-Frequency Electric Field Measurement. Song Z; Zhang W; Wu Q; Mu H; Liu X; Zhang L; Qu J Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30248986 [TBL] [Abstract][Full Text] [Related]
4. Enhanced microwave metrology using an optical grating in Rydberg atoms. Zhao S; Yin Z; Song X; Jia Z; Wang L; Chen B; Zeng Q; Peng Y Appl Opt; 2023 May; 62(14):3747-3752. PubMed ID: 37706992 [TBL] [Abstract][Full Text] [Related]
5. Rydberg-atom-based digital communication using a continuously tunable radio-frequency carrier. Song Z; Liu H; Liu X; Zhang W; Zou H; Zhang J; Qu J Opt Express; 2019 Mar; 27(6):8848-8857. PubMed ID: 31052696 [TBL] [Abstract][Full Text] [Related]
6. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency. Zhao J; Zhu X; Zhang L; Feng Z; Li C; Jia S Opt Express; 2009 Aug; 17(18):15821-6. PubMed ID: 19724582 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Goos-Hänchen shift due to a Rydberg state. Asadpour SH; Hamedi HR; Jafari M Appl Opt; 2018 May; 57(15):4013-4019. PubMed ID: 29791374 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field. Yao J; An Q; Zhou Y; Yang K; Wu F; Fu Y Opt Lett; 2022 Oct; 47(20):5256-5259. PubMed ID: 36240336 [TBL] [Abstract][Full Text] [Related]
9. Real-imaginary spectrum decomposition of the transparency spectra in microwave dressed Rydberg systems. Niu W; Qin L; Shi Z; Zhang Y; Xia S; Feng X; Wang Q; Liu J; Zhao Z; Zhu Z; Li W; Zhao X Opt Express; 2024 Jun; 32(12):21374-21388. PubMed ID: 38859492 [TBL] [Abstract][Full Text] [Related]
10. Magnetic-field-induced splitting of Rydberg Electromagnetically Induced Transparency and Autler-Townes spectra in Li X; Cui Y; Hao J; Zhou F; Wang Y; Jia F; Zhang J; Xie F; Zhong Z Opt Express; 2023 Nov; 31(23):38165-38178. PubMed ID: 38017929 [TBL] [Abstract][Full Text] [Related]
11. Dispersive microwave electrometry using Zeeman frequency modulation spectroscopy of electromagnetically induced transparency in Rydberg atoms. Jia F; Yu Y; Liu X; Zhang X; Zhang L; Wang F; Mei J; Zhang J; Xie F; Zhong Z Appl Opt; 2020 Sep; 59(27):8253-8258. PubMed ID: 32976410 [TBL] [Abstract][Full Text] [Related]
12. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction. Bai Z; Huang G Opt Express; 2016 Mar; 24(5):4442-4461. PubMed ID: 29092273 [TBL] [Abstract][Full Text] [Related]
13. Rydberg atom electric field sensing for metrology, communication and hybrid quantum systems. Zhang H; Ma Y; Liao K; Yang W; Liu Z; Ding D; Yan H; Li W; Zhang L Sci Bull (Beijing); 2024 May; 69(10):1515-1535. PubMed ID: 38614855 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetically induced transparency and fluorescence in blockaded Rydberg atomic system. Li C; Zheng H; Zhang Z; Yao X; Zhang Y; Zhang Y; Zhang Y J Chem Phys; 2013 Oct; 139(16):164316. PubMed ID: 24182038 [TBL] [Abstract][Full Text] [Related]
15. Proposal of Rydberg atomic receiver for amplitude-modulated microwave signals with active Raman gain. Cai Y; Wang J; Lin L; Lu X; Li Y; Peng Y Appl Opt; 2020 Oct; 59(28):8612-8617. PubMed ID: 33104542 [TBL] [Abstract][Full Text] [Related]
16. Distinction of electromagnetically induced transparency and Autler-Towners splitting in a Rydberg-involved ladder-type cold atom system. Ji Z; Jiao Y; Xue Y; Hao L; Zhao J; Jia S Opt Express; 2021 Apr; 29(8):11406-11415. PubMed ID: 33984920 [TBL] [Abstract][Full Text] [Related]
17. Resonant Rydberg Dressing of Alkaline-Earth Atoms via Electromagnetically Induced Transparency. Gaul C; DeSalvo BJ; Aman JA; Dunning FB; Killian TC; Pohl T Phys Rev Lett; 2016 Jun; 116(24):243001. PubMed ID: 27367387 [TBL] [Abstract][Full Text] [Related]
18. Stable, narrow-linewidth laser system with a broad frequency tunability and a fast switching time. Liu C; Nickerson K; Booth DW; Frechem J; Tai H; Miladi H; Moore K; Shaffer JP Opt Lett; 2024 Jan; 49(2):399-402. PubMed ID: 38194578 [TBL] [Abstract][Full Text] [Related]
19. Ferris wheel patterning of Rydberg atoms using electromagnetically induced transparency with optical vortex fields. Hamedi HR; Kudriašov V; Jia N; Qian J; Juzeliūnas G Opt Lett; 2021 Sep; 46(17):4204-4207. PubMed ID: 34469975 [TBL] [Abstract][Full Text] [Related]
20. Frequency stabilization method for transition to a Rydberg state using Zeeman modulation. Jia F; Zhang J; Zhang L; Wang F; Mei J; Yu Y; Zhong Z; Xie F Appl Opt; 2020 Mar; 59(7):2108-2113. PubMed ID: 32225735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]