These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35201026)

  • 41. Experimental Demonstration of the Effectiveness of Electromagnetically Induced Transparency for Enhancing Cross-Phase Modulation in the Short-Pulse Regime.
    Dmochowski G; Feizpour A; Hallaji M; Zhuang C; Hayat A; Steinberg AM
    Phys Rev Lett; 2016 Apr; 116(17):173002. PubMed ID: 27176519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cavity-Induced Optical Nonreciprocity Based on Degenerate Two-Level Atoms.
    Qi CZ; Zheng JR; Tong YH; Li RN; Wang D; Huang LH; Zhou HT
    Nanomaterials (Basel); 2024 Jul; 14(15):. PubMed ID: 39120341
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interaction enhanced imaging of individual Rydberg atoms in dense gases.
    Günter G; Robert-de-Saint-Vincent M; Schempp H; Hofmann CS; Whitlock S; Weidemüller M
    Phys Rev Lett; 2012 Jan; 108(1):013002. PubMed ID: 22304259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carrier phase dependence in the ionization of Rydberg atoms by short radio-frequency pulses: a model system for high order harmonic generation.
    Gürtler A; Robicheaux F; Vrakking MJ; van der Zande WJ; Noordam LD
    Phys Rev Lett; 2004 Feb; 92(6):063901. PubMed ID: 14995238
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Narrow linewidth swept laser source based on cascaded multi-wavelength injection of DFB lasers.
    Liang H; Ying K; Wei F; Sun Y; Wang Z; Chen D; Yang F; Cai H
    Appl Opt; 2020 Oct; 59(30):9393-9399. PubMed ID: 33104656
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electromagnetically induced transparency with Rydberg atoms.
    Petrosyan D; Otterbach J; Fleischhauer M
    Phys Rev Lett; 2011 Nov; 107(21):213601. PubMed ID: 22181878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesoscopic Rydberg gate based on electromagnetically induced transparency.
    Müller M; Lesanovsky I; Weimer H; Büchler HP; Zoller P
    Phys Rev Lett; 2009 May; 102(17):170502. PubMed ID: 19518767
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance.
    Lu Y; Rhee JY; Jang WH; Lee YP
    Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sub-Poissonian statistics of Rydberg-interacting dark-state polaritons.
    Hofmann CS; Günter G; Schempp H; Robert-de-Saint-Vincent M; Gärttner M; Evers J; Whitlock S; Weidemüller M
    Phys Rev Lett; 2013 May; 110(20):203601. PubMed ID: 25167407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electromagnetically induced transparency in a diamond spin ensemble enables all-optical electromagnetic field sensing.
    Acosta VM; Jensen K; Santori C; Budker D; Beausoleil RG
    Phys Rev Lett; 2013 May; 110(21):213605. PubMed ID: 23745875
    [TBL] [Abstract][Full Text] [Related]  

  • 51. THz white light cavity with nonlinear dispersion in graphene.
    Zhou W; Cai Y; Zhao S; Wang P; Li D; Kolenderski P; Peng Y
    Appl Opt; 2020 May; 59(13):3886-3891. PubMed ID: 32400657
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Correlated Photon Dynamics in Dissipative Rydberg Media.
    Zeuthen E; Gullans MJ; Maghrebi MF; Gorshkov AV
    Phys Rev Lett; 2017 Jul; 119(4):043602. PubMed ID: 29341760
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coulomb Bound States of Strongly Interacting Photons.
    Maghrebi MF; Gullans MJ; Bienias P; Choi S; Martin I; Firstenberg O; Lukin MD; Büchler HP; Gorshkov AV
    Phys Rev Lett; 2015 Sep; 115(12):123601. PubMed ID: 26430994
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Precise measurement of microwave polarization using a Rydberg atom-based mixer.
    Wang Y; Jia F; Hao J; Cui Y; Zhou F; Liu X; Mei J; Yu Y; Liu Y; Zhang J; Xie F; Zhong Z
    Opt Express; 2023 Mar; 31(6):10449-10457. PubMed ID: 37157591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Controlling Exciton-Phonon Interactions via Electromagnetically Induced Transparency.
    Walther V; Grünwald P; Pohl T
    Phys Rev Lett; 2020 Oct; 125(17):173601. PubMed ID: 33156663
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inelastic Photon Scattering via the Intracavity Rydberg Blockade.
    Grankin A; Brion E; Boddeda R; Ćuk S; Usmani I; Ourjoumtsev A; Grangier P
    Phys Rev Lett; 2016 Dec; 117(25):253602. PubMed ID: 28036216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laser frequency offset locking via tripod-type electromagnetically induced transparency.
    Ying K; Niu Y; Chen D; Cai H; Qu R; Gong S
    Appl Opt; 2014 Apr; 53(12):2632-7. PubMed ID: 24787589
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption.
    He J; Ding P; Wang J; Fan C; Liang E
    Opt Express; 2015 Mar; 23(5):6083-91. PubMed ID: 25836832
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit.
    Liu N; Langguth L; Weiss T; Kästel J; Fleischhauer M; Pfau T; Giessen H
    Nat Mater; 2009 Sep; 8(9):758-62. PubMed ID: 19578334
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Observation of interference effects via four-photon excitation of highly excited Rydberg states in thermal cesium vapor.
    Kondo JM; Šibalić N; Guttridge A; Wade CG; De Melo NR; Adams CS; Weatherill KJ
    Opt Lett; 2015 Dec; 40(23):5570-3. PubMed ID: 26625053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.