BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 35201223)

  • 1. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.
    Qin Z; Shi X; Yang F; Hou E; Meng D; Sun C; Dai R; Zhang S; Liu H; Xu H; Liang Z
    Opt Express; 2022 Jan; 30(1):473-483. PubMed ID: 35201223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near Perfect Absorber for Long-Wave Infrared Based on Localized Surface Plasmon Resonance.
    Sun L; Liu D; Su J; Li X; Zhou S; Wang K; Zhang Q
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband long-wave infrared metamaterial absorber based on single-sized cut-wire resonators.
    Qin Z; Meng D; Yang F; Shi X; Liang Z; Xu H; Smith DR; Liu Y
    Opt Express; 2021 Jun; 29(13):20275-20285. PubMed ID: 34266120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small-sized long wavelength infrared absorber with perfect ultra-broadband absorptivity.
    Zhou Y; Liang Z; Qin Z; Hou E; Shi X; Zhang Y; Xiong Y; Tang Y; Fan Y; Yang F; Liang J; Chen C; Lai J
    Opt Express; 2020 Jan; 28(2):1279-1290. PubMed ID: 32121842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared.
    Liu J; Chen W; Zheng JC; Chen YS; Yang CF
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31861856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-wave and long-wave infrared dual-band stacked metamaterial absorber for broadband with high refractive index sensitivity.
    Hou E; Meng D; Liang Z; Xiong Y; Yang F; Tang Y; Fan Y; Qin Z; Shi X; Zhang Y; Liang J; Chen C; Lai J
    Appl Opt; 2020 Mar; 59(9):2695-2700. PubMed ID: 32225817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband perfect absorber using triple-layer nanofilm in a long-wave near-infrared regime.
    Kuang K; Wang Q; Yuan X; Yu L; Liang Y; Zhang Y; Peng W
    Appl Opt; 2022 Sep; 61(26):7706-7712. PubMed ID: 36256371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarization-dependent broadband absorber based on composite metamaterials in the long-wavelength infrared range.
    Yu H; Meng D; Liang Z; Xu H; Qin Z; Su X; Smith DR; Liu Y
    Opt Express; 2021 Oct; 29(22):36111-36120. PubMed ID: 34809030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Parametric Analysis of a Wide-Angle and Polarization Insensitive Ultra-Broadband Metamaterial Absorber for Visible Optical Wavelength Applications.
    Chowdhury MZB; Islam MT; Hoque A; Alshammari AS; Alzamil A; Alsaif H; Alshammari BM; Hossain I; Samsuzzaman M
    Nanomaterials (Basel); 2022 Nov; 12(23):. PubMed ID: 36500876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Perfect Absorber Based on Similar Fabry-Perot Four-Band in the Visible Range.
    Wu P; Zhang C; Tang Y; Liu B; Lv L
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32182723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadband Near-Infrared Absorber Based on All Metallic Metasurface.
    Zhang K; Deng R; Song L; Zhang T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31671708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional band-switchable nano-film absorber from narrowband to broadband.
    Wang F; Gao H; Peng W; Li R; Chu S; Yu L; Wang Q
    Opt Express; 2021 Feb; 29(4):5110-5120. PubMed ID: 33726052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region.
    Musa A; Alam T; Islam MT; Hakim ML; Rmili H; Alshammari AS; Islam MS; Soliman MS
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36838994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Infrared Ultra-Broadband Absorber Based on MIM Structure.
    Li M; Wang G; Gao Y; Gao Y
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A wide-angle and TE/TM polarization-insensitive terahertz metamaterial near-perfect absorber based on a multi-layer plasmonic structure.
    Sun Y; Shi Y; Liu X; Song J; Li M; Wang X; Yang F
    Nanoscale Adv; 2021 Jul; 3(14):4072-4078. PubMed ID: 36132834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Broadband Mid-Infrared Metamaterial Absorber Based on Multi-Sized Resonators.
    Huang X; Zhou Z; Cao M; Li R; Sun C; Li X
    Materials (Basel); 2022 Aug; 15(15):. PubMed ID: 35955345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.