These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 35201642)
41. A marine lipopeptides-producing Bacillus amyloliquefaciens HY2-1 with a broad-spectrum antifungal and antibacterial activity and its fermentation kinetics study. Huang LR; Ling XN; Peng SY; Tan MH; Yan LQ; Liang YY; Li GH; Li KT World J Microbiol Biotechnol; 2023 May; 39(8):196. PubMed ID: 37183209 [TBL] [Abstract][Full Text] [Related]
42. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis. Sandrin C; Peypoux F; Michel G Biotechnol Appl Biochem; 1990 Aug; 12(4):370-5. PubMed ID: 2119191 [TBL] [Abstract][Full Text] [Related]
43. Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Hu F; Liu Y; Lin J; Wang W; Li S Appl Microbiol Biotechnol; 2020 May; 104(9):4017-4026. PubMed ID: 32172322 [TBL] [Abstract][Full Text] [Related]
44. Bacillus subtilis cardiolipin protects its own membrane against surfactin-induced permeabilization. Pinkas D; Fišer R; Kozlík P; Dolejšová T; Hryzáková K; Konopásek I; Mikušová G Biochim Biophys Acta Biomembr; 2020 Oct; 1862(10):183405. PubMed ID: 32593615 [TBL] [Abstract][Full Text] [Related]
45. Co-culture of Bacillus amyloliquefaciens and recombinant Pichia pastoris for utilizing kitchen waste to produce fengycins. Wang XF; Miao CH; Qiao B; Xu SJ; Cheng JS J Biosci Bioeng; 2022 Jun; 133(6):560-566. PubMed ID: 35314117 [TBL] [Abstract][Full Text] [Related]
46. Genetic engineering of the precursor supply pathway for the overproduction of the nC Hu F; Cai W; Lin J; Wang W; Li S Microb Cell Fact; 2021 May; 20(1):96. PubMed ID: 33964901 [TBL] [Abstract][Full Text] [Related]
47. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Jung J; Yu KO; Ramzi AB; Choe SH; Kim SW; Han SO Biotechnol Bioeng; 2012 Sep; 109(9):2349-56. PubMed ID: 22511326 [TBL] [Abstract][Full Text] [Related]
48. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Coutte F; Lecouturier D; Yahia SA; Leclère V; Béchet M; Jacques P; Dhulster P Appl Microbiol Biotechnol; 2010 Jun; 87(2):499-507. PubMed ID: 20221757 [TBL] [Abstract][Full Text] [Related]
49. Production and optimization of surfactin produced from locally isolated Bacillus halotolerans grown on agro-industrial wastes and its antimicrobial efficiency. Abdelraof M; Nooman MU; Hashem AH; Al-Kashef AS BMC Microbiol; 2024 Jun; 24(1):193. PubMed ID: 38831400 [TBL] [Abstract][Full Text] [Related]
50. Plant defense stimulation by natural isolates of bacillus depends on efficient surfactin production. Cawoy H; Mariutto M; Henry G; Fisher C; Vasilyeva N; Thonart P; Dommes J; Ongena M Mol Plant Microbe Interact; 2014 Feb; 27(2):87-100. PubMed ID: 24156767 [TBL] [Abstract][Full Text] [Related]
51. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Wei YH; Wang LF; Chang JS Biotechnol Prog; 2004; 20(3):979-83. PubMed ID: 15176908 [TBL] [Abstract][Full Text] [Related]
52. Integrated Biofilm Modification and Transcriptional Analysis for Improving Fengycin Production in Bacillus amyloliquefaciens. Cao CY; Hou ZJ; Ding MZ; Gao GR; Qiao B; Wei SY; Cheng JS Probiotics Antimicrob Proteins; 2024 Apr; ():. PubMed ID: 38652228 [TBL] [Abstract][Full Text] [Related]
53. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. Li X; Yang H; Zhang D; Li X; Yu H; Shen Z J Ind Microbiol Biotechnol; 2015 Jan; 42(1):93-103. PubMed ID: 25366377 [TBL] [Abstract][Full Text] [Related]
54. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin B1 and surfactin in Bacillus subtilis YB8. Tsuge K; Ano T; Shoda M Arch Microbiol; 1996 Apr; 165(4):243-51. PubMed ID: 8639027 [TBL] [Abstract][Full Text] [Related]
55. Establishment of a rapeseed meal fermentation model for iturin A production by Bacillus amyloliquefaciens CX-20. Chen W; Ma X; Wang X; Chen S; Rogiewicz A; Slominski B; Wan X; Huang F Microb Biotechnol; 2019 Nov; 12(6):1417-1429. PubMed ID: 31568665 [TBL] [Abstract][Full Text] [Related]
56. Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Zhang Y; Qi J; Wang Y; Wen J; Zhao X; Qi G Microbiol Res; 2022 Jan; 254():126920. PubMed ID: 34800863 [TBL] [Abstract][Full Text] [Related]
57. Surfactin isoforms from Bacillus subtilis HSO121: separation and characterization. Haddad NI; Liu X; Yang S; Mu B Protein Pept Lett; 2008; 15(3):265-9. PubMed ID: 18336355 [TBL] [Abstract][Full Text] [Related]
58. [Sporulation, competence development and biopesticide activity of a Bacillus subtilis mutant]. Wang X; Luo C; Liu Y; Liu Y; Nie Y; Chen Z Wei Sheng Wu Xue Bao; 2009 Oct; 49(10):1295-300. PubMed ID: 20069874 [TBL] [Abstract][Full Text] [Related]
59. Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Coutte F; Niehren J; Dhali D; John M; Versari C; Jacques P Biotechnol J; 2015 Aug; 10(8):1216-34. PubMed ID: 26220295 [TBL] [Abstract][Full Text] [Related]
60. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Ullrich C; Kluge B; Palacz Z; Vater J Biochemistry; 1991 Jul; 30(26):6503-8. PubMed ID: 1905154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]