These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3520174)

  • 21. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers.
    Li Z; Yang DQ; Liu SL; Yu SY; Lu MH; Zhu J; Zhang ST; Zhu MW; Guo XS; Wu HD; Wang XL; Chen YF
    Sci Rep; 2017 Feb; 7():42863. PubMed ID: 28211510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enamel thickness measurement with a high frequency ultrasonic transducer-based hand-held probe for potential application in the dental veneer placing procedure.
    Ślak B; Ambroziak A; Strumban E; Maev RG
    Acta Bioeng Biomech; 2011; 13(1):65-70. PubMed ID: 21500765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep-collapse operation of capacitive micromachined ultrasonic transducers.
    Olcum S; Yamaner FY; Bozkurt A; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2475-83. PubMed ID: 22083780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers.
    Maimbourg G; Houdouin A; Deffieux T; Tanter M; Aubry JF
    Phys Med Biol; 2018 Jan; 63(2):025026. PubMed ID: 29219124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic power calibrations of cylindrical intracavitary ultrasound hyperthermia applicators.
    Hynynen K
    Med Phys; 1993; 20(1):129-34. PubMed ID: 8455491
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Damage to red blood cells induced by acoustic cavitation.
    Daniels S; Kodama T; Price DJ
    Ultrasound Med Biol; 1995; 21(1):105-11. PubMed ID: 7754569
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Clinical benefit of higher acoustic output levels.
    Kremkau FW
    Ultrasound Med Biol; 1989; 15 Suppl 1():69-70. PubMed ID: 2672517
    [No Abstract]   [Full Text] [Related]  

  • 28. Acoustic field of a wedge-shaped section of a spherical cap transducer.
    Ketterling JA
    J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3065-75. PubMed ID: 14714788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of an Estimation Instrument of Acoustic Lens Properties for Medical Ultrasound Transducers.
    Choi H; Jeong JJ; Kim J
    J Healthc Eng; 2017; 2017():6580217. PubMed ID: 29464102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A constant-flow calorimeter for the measurement of acoustic power at megahertz frequencies.
    Torr GR; Watmough DJ
    Phys Med Biol; 1977 May; 22(3):444-50. PubMed ID: 866408
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Safety of ultrasonic examinations; thermal and mechanical indices.
    Nowicki A
    Med Ultrason; 2020 May; 22(2):203-210. PubMed ID: 32399527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical evaluation of moderately focused spherical transducers and multi-focus acoustic lens/transducer systems for ultrasound thermal therapy.
    Wu X; Sherar M
    Phys Med Biol; 2002 May; 47(9):1603-21. PubMed ID: 12043823
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metrology for ultrasonic applications.
    Zeqiri B
    Prog Biophys Mol Biol; 2007; 93(1-3):138-52. PubMed ID: 17081597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of back reflections on the acoustic power delivered by physiotherapy ultrasound machines.
    McBride KA; Pye SD
    Ultrasound Med Biol; 2009 Oct; 35(10):1672-8. PubMed ID: 19679389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-mode transducers for ultrasound imaging and thermal therapy.
    Owen NR; Chapelon JY; Bouchoux G; Berriet R; Fleury G; Lafon C
    Ultrasonics; 2010 Feb; 50(2):216-20. PubMed ID: 19758673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro-stereolithography as a transducer design method.
    Ho KS; Bradley RJ; Billson DR; Hutchins DA
    Ultrasonics; 2008 Mar; 48(1):1-5. PubMed ID: 18045637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and characterization of a high-power ultrasound driver with ultralow-output impedance.
    Lewis GK; Olbricht WL
    Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermochromic Phantom and Measurement Protocol for Qualitative Analysis of Ultrasound Physiotherapy Systems.
    Costa RM; Alvarenga AV; Costa-Felix RP; Omena TP; von Krüger MA; Pereira WC
    Ultrasound Med Biol; 2016 Jan; 42(1):299-307. PubMed ID: 26456890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection.
    Han M; Liu T; Hu L; Zhang Q
    Opt Express; 2013 Dec; 21(24):29269-76. PubMed ID: 24514479
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analytical and numerical calculations of optimum design frequency for focused ultrasound therapy and acoustic radiation force.
    Ergün AS
    Ultrasonics; 2011 Oct; 51(7):786-94. PubMed ID: 21459399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.