These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 35201741)
1. Catalyst Electrodes with PtCu Nanowire Arrays In Situ Grown on Gas Diffusion Layers for Direct Formic Acid Fuel Cells. Li Y; Yan Y; He Y; Du S ACS Appl Mater Interfaces; 2022 Mar; 14(9):11457-11464. PubMed ID: 35201741 [TBL] [Abstract][Full Text] [Related]
2. Comparative Study of PtNi Nanowire Array Electrodes toward Oxygen Reduction Reaction by Half-Cell Measurement and PEMFC Test. Mardle P; Thirunavukkarasu G; Guan S; Chiu YL; Du S ACS Appl Mater Interfaces; 2020 Sep; 12(38):42832-42841. PubMed ID: 32865384 [TBL] [Abstract][Full Text] [Related]
3. In Situ Integration of Ultrathin PtCu Nanowires with Reduced Graphene Oxide Nanosheets for Efficient Electrocatalytic Oxygen Reduction. Yan X; Chen Y; Deng S; Yang Y; Huang Z; Ge C; Xu L; Sun D; Fu G; Tang Y Chemistry; 2017 Nov; 23(66):16871-16876. PubMed ID: 28940811 [TBL] [Abstract][Full Text] [Related]
4. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Du S; Lin K; Malladi SK; Lu Y; Sun S; Xu Q; Steinberger-Wilckens R; Dong H Sci Rep; 2014 Sep; 4():6439. PubMed ID: 25241800 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells. Sode A; Li W; Yang Y; Wong PC; Gyenge E; Mitchell KA; Bizzotto D J Phys Chem B; 2006 May; 110(17):8715-22. PubMed ID: 16640427 [TBL] [Abstract][Full Text] [Related]
6. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell. Yang L; Zhang Y; Chu M; Deng W; Tan Y; Ma M; Su X; Xie Q; Yao S Biosens Bioelectron; 2014 Feb; 52():105-10. PubMed ID: 24035853 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and Characterization of Nitrogen Doped Reduced Graphene Oxide (N-rGO) Supported PtCu Anode Catalysts for Direct Methanol Fuel Cell. Baronia R; Goel J; Gautam G; Singh D; Singhal SK J Nanosci Nanotechnol; 2019 Jul; 19(7):3832-3843. PubMed ID: 30764941 [TBL] [Abstract][Full Text] [Related]
8. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. Safdar Hossain SK; Saleem J; Mudassir Ahmad Alwi M; Al-Odail FA; Mozahar Hossain M Chem Rec; 2022 Jul; 22(7):e202200045. PubMed ID: 35733082 [TBL] [Abstract][Full Text] [Related]
9. In Situ-Grown Ultrathin Catalyst Layers for Improving both Proton Exchange Membrane Fuel Cell and Anion Exchange Membrane Fuel Cell Performances. Xin D; Liu X; Chen B; Jin X; Hao J; Wang Y; Hu R; Fu J; Wang S; Zhu W; Zhuang Z ACS Appl Mater Interfaces; 2024 Aug; 16(32):42363-42371. PubMed ID: 39078706 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell. You SJ; Wang XH; Zhang JN; Wang JY; Ren NQ; Gong XB Biosens Bioelectron; 2011 Jan; 26(5):2142-6. PubMed ID: 20947329 [TBL] [Abstract][Full Text] [Related]
12. Direct Synthesis of Ultrathin Pt Nanowire Arrays as Catalysts for Methanol Oxidation. Li H; Wu X; Tao X; Lu Y; Wang Y Small; 2020 Aug; 16(33):e2001135. PubMed ID: 32583966 [TBL] [Abstract][Full Text] [Related]
13. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway. Jiang X; Yan X; Ren W; Jia Y; Chen J; Sun D; Xu L; Tang Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):31076-31082. PubMed ID: 27786447 [TBL] [Abstract][Full Text] [Related]
14. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells. Kang S; Lee J; Lee JK; Chung SY; Tak Y J Phys Chem B; 2006 Apr; 110(14):7270-4. PubMed ID: 16599497 [TBL] [Abstract][Full Text] [Related]
15. Platinum Dissolution in Realistic Fuel Cell Catalyst Layers. Ehelebe K; Knöppel J; Bierling M; Mayerhöfer B; Böhm T; Kulyk N; Thiele S; Mayrhofer KJJ; Cherevko S Angew Chem Int Ed Engl; 2021 Apr; 60(16):8882-8888. PubMed ID: 33410273 [TBL] [Abstract][Full Text] [Related]
16. Influence of the Electrode Deposition Method of Graphene-Based Catalyst Inks for ADEFC on Performance. Roschger M; Wolf S; Hasso R; Genorio B; Gorgieva S; Hacker V ACS Appl Mater Interfaces; 2023 Aug; 15(34):40687-40699. PubMed ID: 37590042 [TBL] [Abstract][Full Text] [Related]
17. Design Strategies for Alkaline Exchange Membrane-Electrode Assemblies: Optimization for Fuel Cells and Electrolyzers. Ashdot A; Kattan M; Kitayev A; Tal-Gutelmacher E; Amel A; Page M Membranes (Basel); 2021 Sep; 11(9):. PubMed ID: 34564503 [TBL] [Abstract][Full Text] [Related]
18. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. Xia BY; Wu HB; Yan Y; Lou XW; Wang X J Am Chem Soc; 2013 Jun; 135(25):9480-5. PubMed ID: 23742152 [TBL] [Abstract][Full Text] [Related]
19. A Biphasic Strategy to Synergistically Accelerate Activation and CO Spillover in Formic Acid Oxidation Catalysis. Zhan C; Sun H; Yan W; Xia J; Meng XM; Li T; Bu L; Kong Q; Lin H; Liu W; Huang X; Chen N Nano Lett; 2024 Jul; 24(26):8134-8142. PubMed ID: 38900138 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of the performance of Pd nanoclusters confined within ultrathin silica layers for formic acid oxidation. Shan J; Zeng T; Wu W; Tan Y; Cheng N; Mu S Nanoscale; 2020 Jun; 12(24):12891-12897. PubMed ID: 32520062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]