BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 35201767)

  • 21. Solvent influence on the thermodynamics for hydride transfer from bis(diphosphine) complexes of nickel.
    Connelly Robinson SJ; Zall CM; Miller DL; Linehan JC; Appel AM
    Dalton Trans; 2016 Jun; 45(24):10017-23. PubMed ID: 27071366
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydride, hydrogen atom, proton, and electron transfer driving forces of various five-membered heterocyclic organic hydrides and their reaction intermediates in acetonitrile.
    Zhu XQ; Zhang MT; Yu A; Wang CH; Cheng JP
    J Am Chem Soc; 2008 Feb; 130(8):2501-16. PubMed ID: 18254624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Renewable Hydride Donors for the Catalytic Reduction of CO
    Alherz A; Lim CH; Kuo YC; Lehman P; Cha J; Hynes JT; Musgrave CB
    J Phys Chem B; 2018 Nov; 122(44):10179-10189. PubMed ID: 30290115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioorganometallic chemistry. 13. Regioselective reduction of NAD(+) models, 1-benzylnicotinamde triflate and beta-nicotinamide ribose-5'-methyl phosphate, with in situ generated [CpRh(Bpy)H](+): structure-activity relationships, kinetics, and mechanistic aspects in the formation of the 1,4-NADH derivatives.
    Lo HC; Leiva C; Buriez O; Kerr JB; Olmstead MM; Fish RH
    Inorg Chem; 2001 Dec; 40(26):6705-16. PubMed ID: 11735482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The coordination chemistry of organo-hydride donors: new prospects for efficient multi-electron reduction.
    McSkimming A; Colbran SB
    Chem Soc Rev; 2013 Jun; 42(12):5439-88. PubMed ID: 23507957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping free energy regimes in electrocatalytic reductions to screen transition metal-based catalysts.
    Ramakrishnan S; Moretti RA; Chidsey CED
    Chem Sci; 2019 Aug; 10(32):7649-7658. PubMed ID: 31588316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO
    Siritanaratkul B; Eagle C; Cowan AJ
    Acc Chem Res; 2022 Apr; 55(7):955-965. PubMed ID: 35285618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrocatalytic metal hydride generation using CPET mediators.
    Dey S; Masero F; Brack E; Fontecave M; Mougel V
    Nature; 2022 Jul; 607(7919):499-506. PubMed ID: 35859199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diazaphospholenes as reducing agents: a thermodynamic and electrochemical DFT study.
    Alkhater MF; Alherz AW; Musgrave CB
    Phys Chem Chem Phys; 2021 Sep; 23(33):17794-17802. PubMed ID: 34382635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Making a Splash in Homogeneous CO
    Wiedner ES; Linehan JC
    Chemistry; 2018 Nov; 24(64):16964-16971. PubMed ID: 29876973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Domino electroreduction of CO
    Wu Y; Jiang Z; Lu X; Liang Y; Wang H
    Nature; 2019 Nov; 575(7784):639-642. PubMed ID: 31776492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity.
    Wen M; Huang F; Lu G; Wang ZX
    Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Biomimetic Photoelectrocatalytic Reduction of Carbon Dioxide.
    Xu S; Shen Q; Zheng J; Wang Z; Pan X; Yang N; Zhao G
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203941. PubMed ID: 36008141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determinant Role of Electrogenerated Reactive Nucleophilic Species on Selectivity during Reduction of CO
    Göttle AJ; Koper MTM
    J Am Chem Soc; 2018 Apr; 140(14):4826-4834. PubMed ID: 29551059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights.
    Cole EB; Lakkaraju PS; Rampulla DM; Morris AJ; Abelev E; Bocarsly AB
    J Am Chem Soc; 2010 Aug; 132(33):11539-51. PubMed ID: 20666494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cyclophanes as Platforms for Reactive Multimetallic Complexes.
    Ferreira RB; Murray LJ
    Acc Chem Res; 2019 Feb; 52(2):447-455. PubMed ID: 30668108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.