These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 3520224)

  • 1. Calcium-induced permeabilization of the outer membrane: a method for reconstitution of periplasmic binding protein-dependent transport systems in Escherichia coli and Salmonella typhimurium.
    Brass JM
    Methods Enzymol; 1986; 125():289-302. PubMed ID: 3520224
    [No Abstract]   [Full Text] [Related]  

  • 2. Reconstitution of maltose transport in Escherichia coli: conditions affecting import of maltose-binding protein into the periplasm of calcium-treated cells.
    Brass JM; Ehmann U; Bukau B
    J Bacteriol; 1983 Jul; 155(1):97-106. PubMed ID: 6345515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Associative properties of the Escherichia coli galactose-binding protein and maltose-binding protein.
    Richarme G
    Biochim Biophys Acta; 1983 Oct; 748(1):99-108. PubMed ID: 6351927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of maltose transport in malB mutants of Escherichia coli through calcium-induced disruptions of the outer membrane.
    Brass JM; Boos W; Hengge R
    J Bacteriol; 1981 Apr; 146(1):10-7. PubMed ID: 7012112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the periplasmic maltose-binding protein and the outer-membrane phage lambda receptor in maltodextrin transport of Escherichia coli.
    Ferenci T; Brass J; Boos W
    Biochem Soc Trans; 1980 Dec; 8(6):680-1. PubMed ID: 6450701
    [No Abstract]   [Full Text] [Related]  

  • 6. Active transport of maltose in membrane vesicles obtained from Escherichia coli cells producing tethered maltose-binding protein.
    Dean DA; Fikes JD; Gehring K; Bassford PJ; Nikaido H
    J Bacteriol; 1989 Jan; 171(1):503-10. PubMed ID: 2644203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active transport of maltose in Escherichia coli K12. Role of the periplasmic maltose-binding protein and evidence for a substrate recognition site in the cytoplasmic membrane.
    Shuman HA
    J Biol Chem; 1982 May; 257(10):5455-61. PubMed ID: 7040366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Associative properties of the Escherichia coli galactose binding protein and maltose binding protein.
    Richarme G
    Biochem Biophys Res Commun; 1982 Mar; 105(2):476-81. PubMed ID: 7046749
    [No Abstract]   [Full Text] [Related]  

  • 9. Interspecific reconstitution of maltose transport and chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria.
    Dahl MK; Manson MD
    J Bacteriol; 1985 Dec; 164(3):1057-63. PubMed ID: 3905762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstitution of maltose transport in malB and malA mutants of Escherichia coli.
    Brass JM
    Ann Microbiol (Paris); 1982 Jan; 133A(1):171-80. PubMed ID: 7041740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstitution of binding protein dependent ribose transport in spheroplasts derived from a binding protein negative Escherichia coli K12 mutant and from Salmonella typhimurium.
    Robb FT; Furlong CE
    J Supramol Struct; 1980; 13(2):183-90. PubMed ID: 6787346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical interaction between the phage lambda receptor protein and the carrier-immobilized maltose-binding protein of Escherichia coli.
    Bavoil P; Nikaido H
    J Biol Chem; 1981 Nov; 256(22):11385-8. PubMed ID: 6457826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli.
    Gilson E; Higgins CF; Hofnung M; Ferro-Luzzi Ames G; Nikaido H
    J Biol Chem; 1982 Sep; 257(17):9915-8. PubMed ID: 7050111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of ligand binding to periplasmic proteins involved in bacterial transport and chemotaxis.
    Miller DM; Olson JS; Pflugrath JW; Quiocho FA
    J Biol Chem; 1983 Nov; 258(22):13665-72. PubMed ID: 6358208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maltose and lactose transport in Escherichia coli. Examples of two different types of concentrative transport systems.
    Hengge R; Boos W
    Biochim Biophys Acta; 1983 Aug; 737(3-4):443-78. PubMed ID: 6349688
    [No Abstract]   [Full Text] [Related]  

  • 16. The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins.
    Ferenci T; Boos W
    J Supramol Struct; 1980; 13(1):101-16. PubMed ID: 7003263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.
    Davidson AL; Shuman HA; Nikaido H
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2360-4. PubMed ID: 1549599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galactose- and maltose-stimulated lipoamide dehydrogenase activities related to the binding-protein-dependent transport of galactose and maltose in toluenized cells of Escherichia coli.
    Richarme G; Heine HG
    Eur J Biochem; 1986 Apr; 156(2):399-405. PubMed ID: 3084252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli.
    Matsuyama S; Fujita Y; Mizushima S
    EMBO J; 1993 Jan; 12(1):265-70. PubMed ID: 8428584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical potential releases a membrane-bound secretion intermediate of maltose-binding protein in Escherichia coli.
    Geller BL
    J Bacteriol; 1990 Sep; 172(9):4870-6. PubMed ID: 2203734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.