These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35202264)

  • 1. Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential.
    An J
    Toxics; 2022 Feb; 10(2):. PubMed ID: 35202264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity.
    An J; Jeong B; Nam K
    J Hazard Mater; 2020 Mar; 385():121619. PubMed ID: 31757723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating and modeling the toxicity of arsenate on wheat root elongation: Assessing the effects of pH, sulfate and phosphate.
    Li M; Song N; Song X; Liu J; Su B; Chen X; Guo X; Li M; Zong Q
    Ecotoxicol Environ Saf; 2022 Jul; 239():113633. PubMed ID: 35598446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell membrane surface potential (psi0) plays a dominant role in the phytotoxicity of copper and arsenate.
    Wang P; Zhou D; Kinraide TB; Luo X; Li L; Li D; Zhang H
    Plant Physiol; 2008 Dec; 148(4):2134-43. PubMed ID: 18829983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of the capability of the extended biotic ligand model and machine learning approaches to predict arsenate toxicity.
    Park J; Yang JH; Jung J; Kwak IS; Choe JK; An J
    Chemosphere; 2023 Dec; 344():140350. PubMed ID: 37793548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Interaction and Uptake of Cd-As(V) Mixture to Wheat Roots Affected by Humic Acids, in Terms of root cell Membrane Surface Potential (ψ
    Xu B; Zhou Y; Huang M; Cui P; Wu T; Zhou D; Liu C; Wang Y
    Bull Environ Contam Toxicol; 2023 Jun; 111(1):10. PubMed ID: 37365371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of abiotic ligand model for nickel toxicity to wheat (Triticum aestivum).
    Jiang Y; Gu X; Zhu B; Gu C
    J Environ Sci (China); 2017 Dec; 62():22-30. PubMed ID: 29289288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended biotic ligand model for predicting combined Cu-Zn toxicity to wheat (Triticum aestivum L.): Incorporating the effects of concentration ratio, major cations and pH.
    Wang X; Ji D; Chen X; Ma Y; Yang J; Ma J; Li X
    Environ Pollut; 2017 Nov; 230():210-217. PubMed ID: 28688297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH.
    Wang X; Hua L; Ma Y
    Chemosphere; 2012 Sep; 89(1):89-95. PubMed ID: 22572167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of a biotic ligand model for predicting the toxicity of metalloid selenate to wheat: The effects of pH, phosphate and sulphate.
    Wang F; Wang X; Chen Q; Song N
    Chemosphere; 2021 Feb; 264(Pt 1):128424. PubMed ID: 33032220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a biotic ligand model for acute zinc toxicity to barley root elongation.
    Wang X; Li B; Ma Y; Hua L
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1272-8. PubMed ID: 20570355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y
    Gong B; He E; Qiu H; Li J; Ji J; Peijnenburg WJGM; Liu Y; Zhao L; Cao X
    Environ Pollut; 2019 Jul; 250():456-463. PubMed ID: 31026692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the biotic ligand model for toxicity and the alleviation of toxicity in terms of cell membrane surface potential.
    Wang P; Zhou DM; Li LZ; Luo XS
    Environ Toxicol Chem; 2010 Jul; 29(7):1503-11. PubMed ID: 20821599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of selenite toxicity to wheat root elongation using biotic ligand model: Considering the effects of pH and phosphate anion.
    Wang F; Song N
    Environ Pollut; 2021 Mar; 272():115935. PubMed ID: 33223336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a multi-species biotic ligand model predicting the toxicity of trivalent chromium to barley root elongation in solution culture.
    Song N; Zhong X; Li B; Li J; Wei D; Ma Y
    PLoS One; 2014; 9(8):e105174. PubMed ID: 25119269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of Cu toxicity to barley root elongation in soil with a Terrestrial Biotic Ligand Model developed from sand culture.
    Lin Y; Allen HE; Di Toro DM
    Ecotoxicol Environ Saf; 2018 Feb; 148():336-345. PubMed ID: 29091836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a terrestrial biotic ligand model predicting the effect of cobalt on root growth of barley (Hordeum vulgare).
    Lock K; De Schamphelaere KA; Becaus S; Criel P; Van Eeckhout H; Janssen CR
    Environ Pollut; 2007 Jun; 147(3):626-33. PubMed ID: 17134808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling acute toxicity of metal mixtures to wheat (Triticum aestivum L.) using the biotic ligand model-based toxic units method.
    Wu M; Wang X; Jia Z; De Schamphelaere K; Ji D; Li X; Chen X
    Sci Rep; 2017 Aug; 7(1):9443. PubMed ID: 28842695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved biotic ligand model (BLM) for predicting Co(II)-toxicity to wheat root elongation: The influences of toxic metal speciation and accompanying ions.
    Wang X; Song N
    Ecotoxicol Environ Saf; 2019 Oct; 182():109433. PubMed ID: 31319244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.