BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 35202410)

  • 1. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation.
    Park CW; Oh SJ; Kim KS; Jang MC; Kim IS; Lee YK; Chung MJ; Cho BH; Seo SW
    PLoS One; 2022; 17(2):e0264140. PubMed ID: 35202410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FemurTumorNet: Bone tumor classification in the proximal femur using DenseNet model based on radiographs.
    Pan C; Lian L; Chen J; Huang R
    J Bone Oncol; 2023 Oct; 42():100504. PubMed ID: 37766930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents.
    Wu JT; Wong KCL; Gur Y; Ansari N; Karargyris A; Sharma A; Morris M; Saboury B; Ahmad H; Boyko O; Syed A; Jadhav A; Wang H; Pillai A; Kashyap S; Moradi M; Syeda-Mahmood T
    JAMA Netw Open; 2020 Oct; 3(10):e2022779. PubMed ID: 33034642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence (AI) diagnostic tools: utilizing a convolutional neural network (CNN) to assess periodontal bone level radiographically-a retrospective study.
    Alotaibi G; Awawdeh M; Farook FF; Aljohani M; Aldhafiri RM; Aldhoayan M
    BMC Oral Health; 2022 Sep; 22(1):399. PubMed ID: 36100856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs.
    Yamada Y; Maki S; Kishida S; Nagai H; Arima J; Yamakawa N; Iijima Y; Shiko Y; Kawasaki Y; Kotani T; Shiga Y; Inage K; Orita S; Eguchi Y; Takahashi H; Yamashita T; Minami S; Ohtori S
    Acta Orthop; 2020 Dec; 91(6):699-704. PubMed ID: 32783544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study.
    Wu J; Liu N; Li X; Fan Q; Li Z; Shang J; Wang F; Chen B; Shen Y; Cao P; Liu Z; Li M; Qian J; Yang J; Sun Q
    BMC Med Imaging; 2023 Jan; 23(1):18. PubMed ID: 36717773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study.
    He Y; Pan I; Bao B; Halsey K; Chang M; Liu H; Peng S; Sebro RA; Guan J; Yi T; Delworth AT; Eweje F; States LJ; Zhang PJ; Zhang Z; Wu J; Peng X; Bai HX
    EBioMedicine; 2020 Dec; 62():103121. PubMed ID: 33232868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Gassert FG; Foreman SC; Gassert FT; Jung M; Jungmann PM; Russe MF; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Radiology; 2021 Nov; 301(2):398-406. PubMed ID: 34491126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a deep learning model using convolutional neural networks to identify femoral internal fixation device in radiographs.
    Chen Y; Sun Q; Li Z; Zhong Y; Zeng J; Nie T
    Skeletal Radiol; 2023 Aug; 52(8):1577-1583. PubMed ID: 36964792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of maxillary sinus fungal ball via 3-D CNN-based artificial intelligence: Fully automated system and clinical validation.
    Kim KS; Kim BK; Chung MJ; Cho HB; Cho BH; Jung YG
    PLoS One; 2022; 17(2):e0263125. PubMed ID: 35213545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using a Dual-Input Convolutional Neural Network for Automated Detection of Pediatric Supracondylar Fracture on Conventional Radiography.
    Choi JW; Cho YJ; Lee S; Lee J; Lee S; Choi YH; Cheon JE; Ha JY
    Invest Radiol; 2020 Feb; 55(2):101-110. PubMed ID: 31725064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network.
    Liu Y; Yang P; Pi Y; Jiang L; Zhong X; Cheng J; Xiang Y; Wei J; Li L; Yi Z; Cai H; Zhao Z
    BMC Med Imaging; 2021 Sep; 21(1):131. PubMed ID: 34481459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urine cell image recognition using a deep-learning model for an automated slide evaluation system.
    Kaneko M; Tsuji K; Masuda K; Ueno K; Henmi K; Nakagawa S; Fujita R; Suzuki K; Inoue Y; Teramukai S; Konishi E; Takamatsu T; Ukimura O
    BJU Int; 2022 Aug; 130(2):235-243. PubMed ID: 34143569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence for Automated Implant Identification in Total Hip Arthroplasty: A Multicenter External Validation Study Exceeding Two Million Plain Radiographs.
    Karnuta JM; Murphy MP; Luu BC; Ryan MJ; Haeberle HS; Brown NM; Iorio R; Chen AF; Ramkumar PN
    J Arthroplasty; 2023 Oct; 38(10):1998-2003.e1. PubMed ID: 35271974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach.
    Tanzi L; Vezzetti E; Moreno R; Aprato A; Audisio A; Massè A
    Eur J Radiol; 2020 Dec; 133():109373. PubMed ID: 33126175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm.
    Chung SW; Han SS; Lee JW; Oh KS; Kim NR; Yoon JP; Kim JY; Moon SH; Kwon J; Lee HJ; Noh YM; Kim Y
    Acta Orthop; 2018 Aug; 89(4):468-473. PubMed ID: 29577791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence for detection of periapical lesions on intraoral radiographs: Comparison between convolutional neural networks and human observers.
    Pauwels R; Brasil DM; Yamasaki MC; Jacobs R; Bosmans H; Freitas DQ; Haiter-Neto F
    Oral Surg Oral Med Oral Pathol Oral Radiol; 2021 May; 131(5):610-616. PubMed ID: 33653645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of an Artificial Intelligence-Powered Platform for Prostate Cancer Grading and Quantification.
    Huang W; Randhawa R; Jain P; Iczkowski KA; Hu R; Hubbard S; Eickhoff J; Basu H; Roy R
    JAMA Netw Open; 2021 Nov; 4(11):e2132554. PubMed ID: 34730818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning model for diagnosing gastric mucosal lesions using endoscopic images: development, validation, and method comparison.
    Nam JY; Chung HJ; Choi KS; Lee H; Kim TJ; Soh H; Kang EA; Cho SJ; Ye JC; Im JP; Kim SG; Kim JS; Chung H; Lee JH
    Gastrointest Endosc; 2022 Feb; 95(2):258-268.e10. PubMed ID: 34492271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.