BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35202519)

  • 1. Monitoring microalgal growth of Chlorella minutissima with a new all solid-state contact nitrate selective sensor.
    Balkanlı NE; Işıldak İ; İnan B; Özer T; Özçimen D
    Biotechnol Prog; 2022 May; 38(3):e3247. PubMed ID: 35202519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of various abiotic factors on biomass growth and lipid yield of Chlorella minutissima for sustainable biodiesel production.
    Chandra R; Amit ; Ghosh UK
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3848-3861. PubMed ID: 30539390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exopolysaccharides from microalgae: production, characterization, optimization and techno-economic assessment.
    Koçer AT; İnan B; Kaptan Usul S; Özçimen D; Yılmaz MT; Işıldak İ
    Braz J Microbiol; 2021 Dec; 52(4):1779-1790. PubMed ID: 34510399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production.
    Rezvani F; Sarrafzadeh MH; Seo SH; Oh HM
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27471-27482. PubMed ID: 30043348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.
    Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO
    Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of lipid content of Chlorella minutissima MCC 5 for biodiesel production.
    Chakraborty S; Mohanty D; Ghosh S; Das D
    J Biosci Bioeng; 2016 Sep; 122(3):294-300. PubMed ID: 26922477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhanced lipid productivity of Chlorella minutissima and Chlorella pyrenoidosa by carbon coupling nitrogen manipulation for biodiesel production.
    Bharte S; Desai K
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3492-3500. PubMed ID: 30519914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Liquid Waste from Biogas Production for Microalgae
    Sendzikiene E; Makareviciene V
    Cells; 2022 Apr; 11(7):. PubMed ID: 35406770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen and phosphate removal from dairy processing side-streams by monocultures or consortium of microalgae.
    Kiani H; Azimi Y; Li Y; Mousavi M; Cara F; Mulcahy S; McDonnell H; Blanco A; Halim R
    J Biotechnol; 2023 Jan; 361():1-11. PubMed ID: 36410532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol.
    Paranjape K; Leite GB; Hallenbeck PC
    Bioresour Technol; 2016 Aug; 214():778-786. PubMed ID: 27220067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Chlorella vulgaris for nutrient removal from synthetic wastewater and MBR-treated bio-park secondary effluent: growth kinetics, effects of carbon and phosphate concentrations.
    Ms K; Johnson I; Ngo HH; Guo W; Kumar M
    Environ Monit Assess; 2023 Feb; 195(3):415. PubMed ID: 36807702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of nitrate and phosphate from simulated agricultural runoff water by Chlorella vulgaris.
    Vazirzadeh A; Jafarifard K; Ajdari A; Chisti Y
    Sci Total Environ; 2022 Jan; 802():149988. PubMed ID: 34525699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of pH induced flocculation of marine and freshwater microalgae via central composite design.
    Akış S; Özçimen D
    Biotechnol Prog; 2019 May; 35(3):e2801. PubMed ID: 30840353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effects of eleven key physicochemical factors on growth and lipid accumulation of Chlorella sp. as a feedstock for biodiesel production.
    Parichehreh R; Gheshlaghi R; Mahdavi MA; Kamyab H
    J Biotechnol; 2021 Nov; 340():64-74. PubMed ID: 34454961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chlorella minutissima cultivation with CO
    Freitas BCB; Morais MG; Costa JAV
    Bioresour Technol; 2017 Nov; 244(Pt 1):338-344. PubMed ID: 28780268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate assessment of the effect of Rhodamine 6G solution as a spectral converter on biomass production of microalgae Chlorella sp., nitrate uptake, and energy consumption by the light source.
    Amrei HD; Khoobkar Z; Mollavali M
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30692-30699. PubMed ID: 36441329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [High efficient assimilation of NO₃⁻-N with coproduction of microalgal proteins by Chlorella pyrenoidosa].
    Luo X; Chen J; Wei D
    Sheng Wu Gong Cheng Xue Bao; 2020 Jun; 36(6):1150-1161. PubMed ID: 32597064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae.
    Costa SS; Miranda AL; Andrade BB; Assis DJ; Souza CO; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2018 Sep; 116():552-562. PubMed ID: 29763703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pentoses and light intensity increase the growth and carbohydrate production and alter the protein profile of Chlorella minutissima.
    Freitas BCB; Cassuriaga APA; Morais MG; Costa JAV
    Bioresour Technol; 2017 Aug; 238():248-253. PubMed ID: 28437642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.