These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35202660)
1. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge. Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660 [TBL] [Abstract][Full Text] [Related]
2. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge. Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856 [TBL] [Abstract][Full Text] [Related]
3. Reclamation of an arsenic-bearing gypsum via acid washing and CaO-As stabilization involving svabite formation in thermal treatment. Yang D; Sasaki A; Endo M J Environ Manage; 2019 Feb; 231():811-818. PubMed ID: 30419436 [TBL] [Abstract][Full Text] [Related]
4. [Study on the leaching toxicity and disposal method of arsenic-bearing sludge]. Li X; Wu S; Hu B; Gu P Wei Sheng Yan Jiu; 2008 Mar; 37(2):168-71. PubMed ID: 18589599 [TBL] [Abstract][Full Text] [Related]
5. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution. Ma X; Yao S; Yuan Z; Bi R; Wu X; Zhang J; Wang S; Wang X; Jia Y Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149 [TBL] [Abstract][Full Text] [Related]
6. One-step removal of high-concentration arsenic from wastewater to form Johnbaumite using arsenic-bearing gypsum. Sun X; Mao M; Lu K; Hu Q; Liu W; Lin Z J Hazard Mater; 2022 Feb; 424(Pt C):127585. PubMed ID: 34753651 [TBL] [Abstract][Full Text] [Related]
7. Speciation characterization of arsenic-bearing phase in arsenic sulfide sludge and the sequential leaching mechanisms. Xu S; Dai S; Shen Y; Yu T; Zhang H; Cao H; Zheng G J Hazard Mater; 2022 Feb; 423(Pt A):127035. PubMed ID: 34474362 [TBL] [Abstract][Full Text] [Related]
8. Fe-As sludge stability and effluent quality for a two-stage As-contaminated water treatment with Fe(II) and aeration. Zhuang JM; Hobenshield E; Walsh T Environ Technol; 2009 Feb; 30(2):199-213. PubMed ID: 19278161 [TBL] [Abstract][Full Text] [Related]
9. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. Qi X; Li Y; Wei L; Hao F; Zhu X; Wei Y; Li K; Wang H RSC Adv; 2019 Dec; 10(1):29-42. PubMed ID: 35492560 [TBL] [Abstract][Full Text] [Related]
10. Inhibitory effects of CaO/Fe2O3 on arsenic emission during sewage sludge pyrolysis. Han H; Hu S; Lu C; Wang Y; Jiang L; Xiang J; Su S Bioresour Technol; 2016 Oct; 218():134-9. PubMed ID: 27359062 [TBL] [Abstract][Full Text] [Related]
11. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker. Liu DG; Min XB; Ke Y; Chai LY; Liang YJ; Li YC; Yao LW; Wang ZB Environ Sci Pollut Res Int; 2018 Mar; 25(8):7600-7607. PubMed ID: 29282669 [TBL] [Abstract][Full Text] [Related]
12. Dissolution and final fate of arsenic associated with gypsum, calcite, and ferrihydrite: Influence of microbial reduction of As(V), sulfate, and Fe(III). Rios-Valenciana EE; Briones-Gallardo R; Chazaro-Ruiz LF; Lopez-Lozano NE; Sierra-Alvarez R; Celis LB Chemosphere; 2020 Jan; 239():124823. PubMed ID: 31726520 [TBL] [Abstract][Full Text] [Related]
13. Recovery of zinc and extraction of calcium and sulfur from zinc-rich gypsum residue by selective reduction roasting combined with hydrolysis. Zhang T; Han J; Liu W; Jiao F; Jia W; Qin W J Environ Manage; 2023 Apr; 331():117256. PubMed ID: 36642046 [TBL] [Abstract][Full Text] [Related]
14. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources. Kaufman EN; Little MH; Selvaraj P Appl Biochem Biotechnol; 1997; 63-65():677-93. PubMed ID: 18576124 [TBL] [Abstract][Full Text] [Related]
15. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization. Xing Z; Yang H; Xue X; Jiang P Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688 [TBL] [Abstract][Full Text] [Related]
16. Concrete stabilization of arsenic-bearing iron sludge generated from an electrochemical arsenic remediation plant. Roy A; van Genuchten CM; Mookherjee I; Debsarkar A; Dutta A J Environ Manage; 2019 Mar; 233():141-150. PubMed ID: 30579002 [TBL] [Abstract][Full Text] [Related]
17. Use of organic substrates as electron donors for biological sulfate reduction in gypsiferous mine soils from Nakhon Si Thammarat (Thailand). Kijjanapanich P; Annachhatre AP; Esposito G; Lens PN Chemosphere; 2014 Apr; 101():1-7. PubMed ID: 24332728 [TBL] [Abstract][Full Text] [Related]
18. Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills. Alvarez-Ayuso E; Querol X; Tomás A J Hazard Mater; 2008 May; 153(1-2):544-50. PubMed ID: 17931770 [TBL] [Abstract][Full Text] [Related]
19. Alternative Method for the Treatment of Hydrometallurgical Arsenic-Calcium Residues: The Immobilization of Arsenic as Scorodite. Ma X; Yuan Z; Zhang G; Zhang J; Wang X; Wang S; Jia Y ACS Omega; 2020 Jun; 5(22):12979-12988. PubMed ID: 32548482 [TBL] [Abstract][Full Text] [Related]
20. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags. Zhang X; Sun Y; Ma Y; Ji W; Ren Y Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]