These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35203030)

  • 1. Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis.
    Dai B; Zhao W; Huang H; Li S; Yang G; Wu H; Sun C; Leung DYC
    J Colloid Interface Sci; 2022 Jun; 616():163-176. PubMed ID: 35203030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of ohmic junction and step-scheme heterojunction for enhanced photocatalysis.
    Zhao W; Liu S; Liu Y; Yang S; Liu B; Hong X; Shen J; Sun C
    J Colloid Interface Sci; 2024 Jan; 654(Pt A):134-149. PubMed ID: 37837850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoinduced
    Li N; Yan W; Niu Y; Qu S; Zuo P; Bai H; Zhao N
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9838-9845. PubMed ID: 33595271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rationally constructing of a novel 2D/2D WO
    Qin Y; Lu J; Meng F; Lin X; Feng Y; Yan Y; Meng M
    J Colloid Interface Sci; 2021 Mar; 586():576-587. PubMed ID: 33187668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2.
    An X; Li K; Tang J
    ChemSusChem; 2014 Apr; 7(4):1086-93. PubMed ID: 24574039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline.
    Luo B; Xu D; Li D; Wu G; Wu M; Shi W; Chen M
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17061-9. PubMed ID: 26167624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Efficient Charge Transfer at the Interface between Mixed-Phase Copper-Cuprous Oxide and Conducting Polymer Nanostructures for Photocatalytic Water Splitting.
    Ghosh S; Bera S; Sardar S; Pal S; Camargo FVA; D'Andrea C; Cerullo G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):18867-18877. PubMed ID: 37023322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot Electron-Driven Photocatalysis Using Sub-5 nm Gap Plasmonic Nanofinger Arrays.
    Wang Y; Chen B; Meng D; Song B; Liu Z; Hu P; Yang H; Ou TH; Liu F; Pi H; Pi I; Pi I; Wu W
    Nanomaterials (Basel); 2022 Oct; 12(21):. PubMed ID: 36364506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. g-C
    Sun Z; Fang W; Zhao L; Chen H; He X; Li W; Tian P; Huang Z
    Environ Int; 2019 Sep; 130():104898. PubMed ID: 31228786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LED-driven photocatalysis of toluene, trichloroethylene and formaldehyde by cuprous oxide modified titanate nanotube arrays.
    Chen CH; Peng YP
    Chemosphere; 2022 Jan; 286(Pt 1):131608. PubMed ID: 34298296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient photocatalytic overall water splitting on plasmonic Cu
    Wei P; Zhang P; Zhang Y; Li X
    J Colloid Interface Sci; 2022 Mar; 609():785-793. PubMed ID: 34839913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe
    Kumar A; Rana A; Sharma G; Naushad M; Al-Muhtaseb AH; Guo C; Iglesias-Juez A; Stadler FJ
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40474-40490. PubMed ID: 30387348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance.
    Rajender G; Choudhury B; Giri PK
    Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Stable Plasmonic Cu@Cu
    Lou Y; Zhang Y; Cheng L; Chen J; Zhao Y
    ChemSusChem; 2018 May; 11(9):1505-1511. PubMed ID: 29528560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An LSPR-based "push-pull" synergetic effect for the enhanced photocatalytic performance of a gold nanorod@cuprous oxide-gold nanoparticle ternary composite.
    Yu X; Liu X; Wang B; Meng Q; Sun S; Tang Y; Zhao K
    Nanoscale; 2020 Jan; 12(3):1912-1920. PubMed ID: 31907507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Photocatalysts for Sunlight-Driven Reduction of CO
    Vu NN; Kaliaguine S; Do TO
    ChemSusChem; 2020 Aug; 13(16):3967-3991. PubMed ID: 32476290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-situ chemical vapor deposition to fabricate Cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance.
    Fu Y; Li Q; Liu J; Jiao Y; Hu S; Wang H; Xu S; Jiang B
    J Colloid Interface Sci; 2020 Jun; 570():143-152. PubMed ID: 32146241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Photocatalyst Design: Metal-Semiconductor Junction Affecting Photocatalytic Efficiency.
    Bora T; Dutta J
    J Nanosci Nanotechnol; 2019 Jan; 19(1):383-388. PubMed ID: 30327045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing cuprous oxide-modified zinc tetraphenylporphyrin ultrathin nanosheets heterojunction for enhanced photocatalytic carbon dioxide reduction to methane.
    Wang Z; Min S; Li R; Lin W; Li K; Wang S; Kang L
    J Colloid Interface Sci; 2024 Aug; 667():212-222. PubMed ID: 38636223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.