These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 35203124)
1. A 16S Next Generation Sequencing Based Molecular and Bioinformatics Pipeline to Identify Processed Meat Products Contamination and Mislabelling. Chaora NS; Khanyile KS; Magwedere K; Pierneef R; Tabit FT; Muchadeyi FC Animals (Basel); 2022 Feb; 12(4):. PubMed ID: 35203124 [TBL] [Abstract][Full Text] [Related]
2. Identification of Pork Adulteration in Processed Meat Products Using the Developed Mitochondrial DNA-Based Primers. Ha J; Kim S; Lee J; Lee S; Lee H; Choi Y; Oh H; Yoon Y Korean J Food Sci Anim Resour; 2017; 37(3):464-468. PubMed ID: 28747833 [TBL] [Abstract][Full Text] [Related]
3. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes. Barakat H; El-Garhy HA; Moustafa MM Appl Microbiol Biotechnol; 2014 Dec; 98(23):9805-16. PubMed ID: 25324129 [TBL] [Abstract][Full Text] [Related]
4. Detecting mislabelling in meat products using PCR-FINS. Soman M; Paul RJ; Antony M; Padinjarattath Sasidharan S J Food Sci Technol; 2020 Nov; 57(11):4286-4292. PubMed ID: 33071350 [TBL] [Abstract][Full Text] [Related]
5. Molecular identification of adulteration in mutton based on mitochondrial 16S rRNA gene. Xu J; Zhao W; Zhu M; Wen Y; Xie T; He X; Zhang Y; Cao S; Niu L; Zhang H; Zhong T Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):628-32. PubMed ID: 24739005 [TBL] [Abstract][Full Text] [Related]
6. Multiplex PCR and 12S rRNA gene sequencing for detection of meat adulteration: A case study in the Egyptian markets. Galal-Khallaf A Gene; 2021 Jan; 764():145062. PubMed ID: 32860900 [TBL] [Abstract][Full Text] [Related]
7. Re-visiting the occurrence of undeclared species in sausage products sold in Canada. Shehata HR; Naaum AM; Chen S; Murphy T; Li J; Shannon K; Awmack D; Locas A; Hanner RH Food Res Int; 2019 Aug; 122():593-598. PubMed ID: 31229118 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Illumina versus Nanopore 16S rRNA Gene Sequencing of the Human Nasal Microbiota. Heikema AP; Horst-Kreft D; Boers SA; Jansen R; Hiltemann SD; de Koning W; Kraaij R; de Ridder MAJ; van Houten CB; Bont LJ; Stubbs AP; Hays JP Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32967250 [TBL] [Abstract][Full Text] [Related]
9. Development and evaluation of a meat mitochondrial metagenomic (3MG) method for composition determination of meat from fifteen mammalian and avian species. Jiang M; Xu SF; Tang TS; Miao L; Luo BZ; Ni Y; Kong FD; Liu C BMC Genomics; 2022 Jan; 23(1):36. PubMed ID: 34996352 [TBL] [Abstract][Full Text] [Related]
10. Selenium Contents in Different Types of Raw and Processed Meat Products, Consumed Among the General Population of Pakistan. Almani S; Talpur FN; Memon N; Afridi HI Biol Trace Elem Res; 2020 Feb; 193(2):357-363. PubMed ID: 31020514 [TBL] [Abstract][Full Text] [Related]
11. MeFiT: merging and filtering tool for illumina paired-end reads for 16S rRNA amplicon sequencing. Parikh HI; Koparde VN; Bradley SP; Buck GA; Sheth NU BMC Bioinformatics; 2016 Dec; 17(1):491. PubMed ID: 27905885 [TBL] [Abstract][Full Text] [Related]
12. Comparison of quantitative methods based on SYBR Green real-time qPCR to estimate pork meat adulteration in processed beef products. Kang TS; Tanaka T Food Chem; 2018 Dec; 269():549-558. PubMed ID: 30100472 [TBL] [Abstract][Full Text] [Related]
13. Improved pipeline for reducing erroneous identification by 16S rRNA sequences using the Illumina MiSeq platform. Jeon YS; Park SC; Lim J; Chun J; Kim BS J Microbiol; 2015 Jan; 53(1):60-9. PubMed ID: 25557481 [TBL] [Abstract][Full Text] [Related]
14. Molecular detection of adulteration in chicken products based on mitochondrial 12S rRNA gene. Abuzinadah OH; Yacoub HA; El Ashmaoui HM; Ramadan HA Mitochondrial DNA; 2015 Jun; 26(3):337-40. PubMed ID: 24102598 [TBL] [Abstract][Full Text] [Related]
15. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Uddin SMK; Hossain MAM; Chowdhury ZZ; Johan MRB Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Aug; 38(8):1273-1288. PubMed ID: 34077338 [TBL] [Abstract][Full Text] [Related]
16. A comparison of sequencing platforms and bioinformatics pipelines for compositional analysis of the gut microbiome. Allali I; Arnold JW; Roach J; Cadenas MB; Butz N; Hassan HM; Koci M; Ballou A; Mendoza M; Ali R; Azcarate-Peril MA BMC Microbiol; 2017 Sep; 17(1):194. PubMed ID: 28903732 [TBL] [Abstract][Full Text] [Related]
17. Detection of species adulteration in meat products and Mozzarella-type cheeses using duplex PCR of mitochondrial Afifa Khatun M; Hossain A; Hossain MS; Kamruzzaman Munshi M; Huque R Food Chem (Oxf); 2021 Jul; 2():100017. PubMed ID: 35415622 [TBL] [Abstract][Full Text] [Related]
18. Detection and quantification of beef and pork materials in meat products by duplex droplet digital PCR. Cai Y; He Y; Lv R; Chen H; Wang Q; Pan L PLoS One; 2017; 12(8):e0181949. PubMed ID: 28771608 [TBL] [Abstract][Full Text] [Related]
19. Myoglobin as marker in meat adulteration: a UPLC method for determining the presence of pork meat in raw beef burger. Giaretta N; Di Giuseppe AM; Lippert M; Parente A; Di Maro A Food Chem; 2013 Dec; 141(3):1814-20. PubMed ID: 23870895 [TBL] [Abstract][Full Text] [Related]
20. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures. Bertolini F; Ghionda MC; D'Alessandro E; Geraci C; Chiofalo V; Fontanesi L PLoS One; 2015; 10(4):e0121701. PubMed ID: 25923709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]