These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35203128)

  • 1. A Comparative Analysis of Metabolic Profiles of Embryonic Skeletal Muscle from Lantang and Landrace Pigs.
    Cai S; Duo T; Wang X; Tong X; Luo C; Chen Y; Li J; Mo D
    Animals (Basel); 2022 Feb; 12(4):. PubMed ID: 35203128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness.
    Zhao X; Mo D; Li A; Gong W; Xiao S; Zhang Y; Qin L; Niu Y; Guo Y; Liu X; Cong P; He Z; Wang C; Li J; Chen Y
    PLoS One; 2011; 6(5):e19774. PubMed ID: 21637832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted metabolomics to reveal muscle-specific energy metabolism between bovine longissimus lumborum and psoas major during early postmortem periods.
    Yu Q; Tian X; Shao L; Li X; Dai R
    Meat Sci; 2019 Oct; 156():166-173. PubMed ID: 31181502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomic Analysis of the Skeletal Muscle of Mice Overexpressing PGC-1α.
    Hatazawa Y; Senoo N; Tadaishi M; Ogawa Y; Ezaki O; Kamei Y; Miura S
    PLoS One; 2015; 10(6):e0129084. PubMed ID: 26114427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosted TCA cycle enhances survival of zebrafish to Vibrio alginolyticus infection.
    Yang MJ; Cheng ZX; Jiang M; Zeng ZH; Peng B; Peng XX; Li H
    Virulence; 2018 Jan; 9(1):634-644. PubMed ID: 29338666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated analysis revealed different microRNA-mRNA profiles during skeletal muscle development between Landrace and Lantang pigs.
    Xie S; Chen L; Zhang X; Liu X; Chen Y; Mo D
    Sci Rep; 2017 May; 7(1):2516. PubMed ID: 28566753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated analysis of non-coding RNA and mRNA expression profiles of 2 pig breeds differing in muscle traits.
    Sun J; Xie M; Huang Z; Li H; Chen T; Sun R; Wang J; Xi Q; Wu T; Zhang Y
    J Anim Sci; 2017 Mar; 95(3):1092-1103. PubMed ID: 28380516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and comparison of microRNAs from skeletal muscle and adipose tissues from two porcine breeds.
    Li HY; Xi QY; Xiong YY; Liu XL; Cheng X; Shu G; Wang SB; Wang LN; Gao P; Zhu XT; Jiang QY; Yuan L; Zhang YL
    Anim Genet; 2012 Dec; 43(6):704-13. PubMed ID: 22497549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid and transcriptome profiling of longissimus dorsi muscles between pig breeds differing in meat quality.
    Yu K; Shu G; Yuan F; Zhu X; Gao P; Wang S; Wang L; Xi Q; Zhang S; Zhang Y; Li Y; Wu T; Yuan L; Jiang Q
    Int J Biol Sci; 2013; 9(1):108-18. PubMed ID: 23355796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets.
    Gao CQ; Xu YL; Jin CL; Hu XC; Li HC; Xing GX; Yan HC; Wang XQ
    Oncotarget; 2017 Jun; 8(26):43192-43200. PubMed ID: 28574820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days.
    Li A; Mo D; Zhao X; Jiang W; Cong P; He Z; Xiao S; Liu X; Chen Y
    Mamm Genome; 2013 Feb; 24(1-2):72-9. PubMed ID: 23160730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The differential proliferative ability of satellite cells in Lantang and Landrace pigs.
    Wang XQ; Yang WJ; Yang Z; Shu G; Wang SB; Jiang QY; Yuan L; Wu TS
    PLoS One; 2012; 7(3):e32537. PubMed ID: 22427853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle.
    Muroya S; Oe M; Ojima K; Watanabe A
    Asian-Australas J Anim Sci; 2019 Aug; 32(8):1172-1185. PubMed ID: 30744349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CIDE gene expression in adipose tissue, liver, and skeletal muscle from obese and lean pigs.
    Qiu YQ; Yang XF; Ma XY; Xiong YX; Tian ZM; Fan QL; Wang L; Jiang ZY
    J Zhejiang Univ Sci B; 2017 Jun; 18(6):492-500. PubMed ID: 28585425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional metabolomics approach reveals the reduced biosynthesis of fatty acids and TCA cycle is required for pectinase activity in Bacillus licheniformis.
    Guan Y; Yin D; Du X; Ye X
    J Ind Microbiol Biotechnol; 2018 Nov; 45(11):951-960. PubMed ID: 30178168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression patterns of insulin-like growth factor system members and their correlations with growth and carcass traits in Landrace and Lantang pigs during postnatal development.
    Li Z; Wu Z; Ren G; Zhao Y; Liu D
    Mol Biol Rep; 2013 May; 40(5):3569-76. PubMed ID: 23269622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolomics reveals critical adrenergic regulatory checkpoints in glycolysis and pentose-phosphate pathways in embryonic heart.
    Peoples JNR; Maxmillian T; Le Q; Nadtochiy SM; Brookes PS; Porter GA; Davidson VL; Ebert SN
    J Biol Chem; 2018 May; 293(18):6925-6941. PubMed ID: 29540484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo metabolic flux profiling with stable isotopes discriminates sites and quantifies effects of mitochondrial dysfunction in C. elegans.
    Vergano SS; Rao M; McCormack S; Ostrovsky J; Clarke C; Preston J; Bennett MJ; Yudkoff M; Xiao R; Falk MJ
    Mol Genet Metab; 2014 Mar; 111(3):331-341. PubMed ID: 24445252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement.
    Lazzarino G; Amorini AM; Signoretti S; Musumeci G; Lazzarino G; Caruso G; Pastore FS; Di Pietro V; Tavazzi B; Belli A
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.