These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35203423)

  • 1. Controlled Release in Hydrogels Using DNA Nanotechnology.
    Hu CH; Veneziano R
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting.
    Göckler T; Haase S; Kempter X; Pfister R; Maciel BR; Grimm A; Molitor T; Willenbacher N; Schepers U
    Adv Healthc Mater; 2021 Jul; 10(14):e2100206. PubMed ID: 34145799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications.
    Gopinathan J; Noh I
    Tissue Eng Regen Med; 2018 Oct; 15(5):531-546. PubMed ID: 30603577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Click Chemistry Hydrogels for Extrusion Bioprinting: Progress, Challenges, and Opportunities.
    Mueller E; Poulin I; Bodnaryk WJ; Hoare T
    Biomacromolecules; 2022 Mar; 23(3):619-640. PubMed ID: 34989569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA Crosslinked Mucin Hydrogels Allow for On-Demand Gel Disintegration and Triggered Particle Release.
    Henkel M; Kimna C; Lieleg O
    Macromol Biosci; 2024 Apr; 24(4):e2300427. PubMed ID: 38217373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Printability and bio-functionality of a shear thinning methacrylated xanthan-gelatin composite bioink.
    Garcia-Cruz MR; Postma A; Frith JE; Meagher L
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33662950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
    Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A
    Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctionalised skin substitute of hybrid gelatin-polyvinyl alcohol bioinks for chronic wound: injectable vs. 3D bioprinting.
    Masri S; Fadilah NIM; Hao LQ; Maarof M; Tabata Y; Hiraoka Y; Fauzi MB
    Drug Deliv Transl Res; 2024 Apr; 14(4):1005-1027. PubMed ID: 37938542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic peptide-folding mediated biofunctionalization and modulation of hydrogels for 4D bioprinting.
    Aronsson C; Jury M; Naeimipour S; Boroojeni FR; Christoffersson J; Lifwergren P; Mandenius CF; Selegård R; Aili D
    Biofabrication; 2020 Jul; 12(3):035031. PubMed ID: 32428894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels.
    Guo C; Kim H; Ovadia EM; Mourafetis CM; Yang M; Chen W; Kloxin AM
    Acta Biomater; 2017 Jul; 56():80-90. PubMed ID: 28391052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels.
    Parmar PA; St-Pierre JP; Chow LW; Spicer CD; Stoichevska V; Peng YY; Werkmeister JA; Ramshaw JAM; Stevens MM
    Acta Biomater; 2017 Mar; 51():75-88. PubMed ID: 28087486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications.
    Mahmood A; Patel D; Hickson B; DesRochers J; Hu X
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clickable Dynamic Bioinks Enable Post-Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space.
    Tournier P; Saint-Pé G; Lagneau N; Loll F; Halgand B; Tessier A; Guicheux J; Visage CL; Delplace V
    Adv Sci (Weinh); 2023 Oct; 10(30):e2300055. PubMed ID: 37712185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour
    Souza A; Kevin M; Rodriguez BJ; Reynaud EG
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.