These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 35203603)
41. The optimal reference population for cardiac normality in myocardial SPET in the detection of coronary artery stenoses: patients with normal coronary angiography or subjects with low likelihood of coronary artery disease? Toft J; Lindahl D; Ohlsson M; Palmer J; Lundin A; Edenbrandt L; Hesse B Eur J Nucl Med; 2001 Jul; 28(7):831-5. PubMed ID: 11504079 [TBL] [Abstract][Full Text] [Related]
42. Initial evaluation of a convolutional neural network used for noninvasive assessment of coronary artery disease severity from coronary computed tomography angiography data. Podgorsak AR; Sommer KN; Reddy A; Iyer V; Wilson MF; Rybicki FJ; Mitsouras D; Sharma U; Fujimoto S; Kumamaru KK; Angel E; Ionita CN Med Phys; 2020 Sep; 47(9):3996-4004. PubMed ID: 32562286 [TBL] [Abstract][Full Text] [Related]
43. Feasibility of remote monitoring for fatal coronary heart disease using Apple Watch ECGs. Butler L; Ivanov A; Celik T; Karabayir I; Chinthala L; Hudson MM; Ness KK; Mulrooney DA; Dixon SB; Tootooni MS; Doerr AJ; Jaeger BC; Davis RL; McManus DD; Herrington D; Akbilgic O Cardiovasc Digit Health J; 2024 Jun; 5(3):115-121. PubMed ID: 38989042 [TBL] [Abstract][Full Text] [Related]
44. Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals. Jahmunah V; Ng EYK; San TR; Acharya UR Comput Biol Med; 2021 Jul; 134():104457. PubMed ID: 33991857 [TBL] [Abstract][Full Text] [Related]
45. Hybrid artificial intelligence outcome prediction using features extraction from stress perfusion cardiac magnetic resonance images and electronic health records. Alskaf E; Crawley R; Scannell CM; Suinesiaputra A; Young A; Masci PG; Perera D; Chiribiri A J Med Artif Intell; 2024 Mar; 7():3. PubMed ID: 38584766 [TBL] [Abstract][Full Text] [Related]
46. Total coronary atherosclerotic plaque burden assessment by CT angiography for detecting obstructive coronary artery disease associated with myocardial perfusion abnormalities. Kishi S; Magalhães TA; Cerci RJ; Matheson MB; Vavere A; Tanami Y; Kitslaar PH; George RT; Brinker J; Miller JM; Clouse ME; Lemos PA; Niinuma H; Reiber JH; Rochitte CE; Rybicki FJ; Di Carli MF; Cox C; Lima JA; Arbab-Zadeh A J Cardiovasc Comput Tomogr; 2016; 10(2):121-7. PubMed ID: 26817414 [TBL] [Abstract][Full Text] [Related]
47. Detecting Coronary Artery Disease Using Rest Seismocardiography and Gyrocardiography. Dehkordi P; Bauer EP; Tavakolian K; Xiao ZG; Blaber AP; Khosrow-Khavar F Front Physiol; 2021; 12():758727. PubMed ID: 34925059 [TBL] [Abstract][Full Text] [Related]
48. Stress echocardiography for the diagnosis of coronary artery disease: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2010; 10(9):1-61. PubMed ID: 23074412 [TBL] [Abstract][Full Text] [Related]
49. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. Naya M; Murthy VL; Taqueti VR; Foster CR; Klein J; Garber M; Dorbala S; Hainer J; Blankstein R; Resnic F; Di Carli MF J Nucl Med; 2014 Feb; 55(2):248-55. PubMed ID: 24408896 [TBL] [Abstract][Full Text] [Related]
50. Evaluating value of positive T wave in lead V1 and TV1 > TV6 pattern in predicting significant coronary artery disease in patients undergoing coronary angiography. Mansouri MH; Sanei H; Mansouri P; Behnam-Roudsari S; Shemirani H; Zavar R ARYA Atheroscler; 2021 Jan; 17(1):1-6. PubMed ID: 34703483 [TBL] [Abstract][Full Text] [Related]
51. Comparison of radiation dose, contrast enhancement and image quality of prospective ECG-Gated CT coronary angiography: Single versus dual source CT. Liang CR; Ong CC; Chai P; Teo LLS Radiography (Lond); 2021 Aug; 27(3):831-839. PubMed ID: 33581989 [TBL] [Abstract][Full Text] [Related]
52. Deep learning of heart-sound signals for efficient prediction of obstructive coronary artery disease. Ainiwaer A; Hou WQ; Qi Q; Kadier K; Qin L; Rehemuding R; Mei M; Wang D; Ma X; Dai JG; Ma YT Heliyon; 2024 Jan; 10(1):e23354. PubMed ID: 38169906 [TBL] [Abstract][Full Text] [Related]
53. A comprehensive artificial intelligence-enabled electrocardiogram interpretation program. Kashou AH; Ko WY; Attia ZI; Cohen MS; Friedman PA; Noseworthy PA Cardiovasc Digit Health J; 2020; 1(2):62-70. PubMed ID: 35265877 [TBL] [Abstract][Full Text] [Related]
54. Application of artificial intelligence using a convolutional neural network for diagnosis of early gastric cancer based on magnifying endoscopy with narrow-band imaging. Ueyama H; Kato Y; Akazawa Y; Yatagai N; Komori H; Takeda T; Matsumoto K; Ueda K; Matsumoto K; Hojo M; Yao T; Nagahara A; Tada T J Gastroenterol Hepatol; 2021 Feb; 36(2):482-489. PubMed ID: 32681536 [TBL] [Abstract][Full Text] [Related]
55. Usefulness of Achieving ≥10 METs With a Negative Stress Electrocardiogram to Screen for High-Risk Obstructive Coronary Artery Disease in Patients Referred for Coronary Angiography After Exercise Stress Testing. Löffler AI; Perez MV; Nketiah EO; Bourque JM; Keeley EC Am J Cardiol; 2018 Feb; 121(3):289-293. PubMed ID: 29191566 [TBL] [Abstract][Full Text] [Related]
56. Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension. Liu CM; Shih ESC; Chen JY; Huang CH; Wu IC; Chen PF; Higa S; Yagi N; Hu YF; Hwang MJ; Chen SA JACC Asia; 2022 Jun; 2(3):258-270. PubMed ID: 36338407 [TBL] [Abstract][Full Text] [Related]
57. Clinical values of resting electrocardiography in patients with known or suspected chronic coronary artery disease: a stress perfusion cardiac MRI study. Kaolawanich Y; Thongsongsang R; Songsangjinda T; Boonyasirinant T BMC Cardiovasc Disord; 2021 Dec; 21(1):621. PubMed ID: 34963469 [TBL] [Abstract][Full Text] [Related]
58. Detection of Left Atrial Enlargement Using a Convolutional Neural Network-Enabled Electrocardiogram. Jiang J; Deng H; Xue Y; Liao H; Wu S Front Cardiovasc Med; 2020; 7():609976. PubMed ID: 33392274 [No Abstract] [Full Text] [Related]
59. Artificial intelligence for detecting mitral regurgitation using electrocardiography. Kwon JM; Kim KH; Akkus Z; Jeon KH; Park J; Oh BH J Electrocardiol; 2020; 59():151-157. PubMed ID: 32146201 [TBL] [Abstract][Full Text] [Related]
60. Application of Neural Networks to 12-Lead Electrocardiography - Current Status and Future Directions. Goto S; Goto S Circ Rep; 2019 Nov; 1(11):481-486. PubMed ID: 33693089 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]