These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35203608)

  • 21. Downregulation of glial genes involved in synaptic function mitigates Huntington's disease pathogenesis.
    Onur TS; Laitman A; Zhao H; Keyho R; Kim H; Wang J; Mair M; Wang H; Li L; Perez A; de Haro M; Wan YW; Allen G; Lu B; Al-Ramahi I; Liu Z; Botas J
    Elife; 2021 Apr; 10():. PubMed ID: 33871358
    [TBL] [Abstract][Full Text] [Related]  

  • 22. bHLH transcription factors in neural development, disease, and reprogramming.
    Dennis DJ; Han S; Schuurmans C
    Brain Res; 2019 Feb; 1705():48-65. PubMed ID: 29544733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of the splicing regulator polypyrimidine tract-binding protein in normal and neoplastic brain.
    McCutcheon IE; Hentschel SJ; Fuller GN; Jin W; Cote GJ
    Neuro Oncol; 2004 Jan; 6(1):9-14. PubMed ID: 14769134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct In Vitro Reprogramming of Astrocytes into Induced Neurons.
    Sharif N; Calzolari F; Berninger B
    Methods Mol Biol; 2021; 2352():13-29. PubMed ID: 34324177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Conversion of Somatic Cells into Induced Neurons.
    An N; Xu H; Gao WQ; Yang H
    Mol Neurobiol; 2018 Jan; 55(1):642-651. PubMed ID: 27981499
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology.
    Liu Y; Deng W
    Brain Res; 2016 May; 1638(Pt A):30-41. PubMed ID: 26423934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct Conversion of Human Stem Cell-Derived Glial Progenitor Cells into GABAergic Interneurons.
    Giacomoni J; Bruzelius A; Stamouli CA; Rylander Ottosson D
    Cells; 2020 Nov; 9(11):. PubMed ID: 33182669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cochlear Sox2
    Chen Z; Huang Y; Yu C; Liu Q; Qiu C; Wan G
    Front Cell Dev Biol; 2021; 9():728352. PubMed ID: 34621745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells.
    Xue Y; Qian H; Hu J; Zhou B; Zhou Y; Hu X; Karakhanyan A; Pang Z; Fu XD
    Nat Neurosci; 2016 Jun; 19(6):807-15. PubMed ID: 27110916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior.
    Raiders S; Black EC; Bae A; MacFarlane S; Klein M; Shaham S; Singhvi A
    Elife; 2021 Mar; 10():. PubMed ID: 33759761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Direct Neuronal Reprogramming for Disease Modeling Studies Using Patient-Derived Neurons: What Have We Learned?
    Drouin-Ouellet J; Pircs K; Barker RA; Jakobsson J; Parmar M
    Front Neurosci; 2017; 11():530. PubMed ID: 29033781
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct reprogramming of terminally differentiated cells into neurons: A novel and promising strategy for Alzheimer's disease treatment.
    Yavarpour-Bali H; Ghasemi-Kasman M; Shojaei A
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Mar; 98():109820. PubMed ID: 31743695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brains in metamorphosis: reprogramming cell identity within the central nervous system.
    Arlotta P; Berninger B
    Curr Opin Neurobiol; 2014 Aug; 27():208-14. PubMed ID: 24800935
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of pericytes to neurons: a new guest at the reprogramming convention.
    Nivet E; Sancho-Martinez I; Izpisua Belmonte JC
    Stem Cell Res Ther; 2013 Jan; 4(1):2. PubMed ID: 23312036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Small Molecules in the Central Nervous System Direct Neuronal Reprogramming.
    Wang J; Chen S; Pan C; Li G; Tang Z
    Front Bioeng Biotechnol; 2022; 10():799152. PubMed ID: 35875485
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Astrocyte-neuron interplay in maladaptive plasticity.
    Papa M; De Luca C; Petta F; Alberghina L; Cirillo G
    Neurosci Biobehav Rev; 2014 May; 42():35-54. PubMed ID: 24509064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neuronal reprogramming in treating spinal cord injury.
    Chen X; Li H
    Neural Regen Res; 2022 Jul; 17(7):1440-1445. PubMed ID: 34916416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenotypic Reprogramming of Striatal Neurons into Dopaminergic Neuron-like Cells in the Adult Mouse Brain.
    Niu W; Zang T; Wang LL; Zou Y; Zhang CL
    Stem Cell Reports; 2018 Nov; 11(5):1156-1170. PubMed ID: 30318292
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Age-dependent Müller glia neurogenic competence in the mouse retina.
    Löffler K; Schäfer P; Völkner M; Holdt T; Karl MO
    Glia; 2015 Oct; 63(10):1809-24. PubMed ID: 25943952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.