These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Zhang G; Lübke L; Chen F; Beil T; Takamiya M; Diotel N; Strähle U; Rastegar S Cells; 2021 Oct; 10(10):. PubMed ID: 34685774 [TBL] [Abstract][Full Text] [Related]
3. Midkine-A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina. Luo J; Uribe RA; Hayton S; Calinescu AA; Gross JM; Hitchcock PF Neural Dev; 2012 Oct; 7():33. PubMed ID: 23111152 [TBL] [Abstract][Full Text] [Related]
4. Cellular expression of midkine-a and midkine-b during retinal development and photoreceptor regeneration in zebrafish. Calinescu AA; Vihtelic TS; Hyde DR; Hitchcock PF J Comp Neurol; 2009 May; 514(1):1-10. PubMed ID: 19263476 [TBL] [Abstract][Full Text] [Related]
5. Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon. Edelmann K; Glashauser L; Sprungala S; Hesl B; Fritschle M; Ninkovic J; Godinho L; Chapouton P J Comp Neurol; 2013 Sep; 521(13):3099-115. PubMed ID: 23787922 [TBL] [Abstract][Full Text] [Related]
6. Midkine-a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. Gramage E; D'Cruz T; Taylor S; Thummel R; Hitchcock PF PLoS One; 2015; 10(3):e0121789. PubMed ID: 25803551 [TBL] [Abstract][Full Text] [Related]
7. Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Winkler C; Schafer M; Duschl J; Schartl M; Volff JN Genome Res; 2003 Jun; 13(6A):1067-81. PubMed ID: 12743018 [TBL] [Abstract][Full Text] [Related]
8. The helix-loop-helix protein id1 controls stem cell proliferation during regenerative neurogenesis in the adult zebrafish telencephalon. Rodriguez Viales R; Diotel N; Ferg M; Armant O; Eich J; Alunni A; März M; Bally-Cuif L; Rastegar S; Strähle U Stem Cells; 2015 Mar; 33(3):892-903. PubMed ID: 25376791 [TBL] [Abstract][Full Text] [Related]
9. The expression and function of midkine in the vertebrate retina. Gramage E; Li J; Hitchcock P Br J Pharmacol; 2014 Feb; 171(4):913-23. PubMed ID: 24460673 [TBL] [Abstract][Full Text] [Related]
10. Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. Zhang G; Ferg M; Lübke L; Takamiya M; Beil T; Gourain V; Diotel N; Strähle U; Rastegar S Stem Cells; 2020 Jul; 38(7):875-889. PubMed ID: 32246536 [TBL] [Abstract][Full Text] [Related]
11. Midkine-a Regulates the Formation of a Fibrotic Scar During Zebrafish Heart Regeneration. Grivas D; González-Rajal Á; de la Pompa JL Front Cell Dev Biol; 2021; 9():669439. PubMed ID: 34026760 [TBL] [Abstract][Full Text] [Related]
12. Excitotoxic brain injury in adult zebrafish stimulates neurogenesis and long-distance neuronal integration. Skaggs K; Goldman D; Parent JM Glia; 2014 Dec; 62(12):2061-79. PubMed ID: 25043622 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence-Activated Cell Sorting-Based Isolation and Characterization of Neural Stem Cells from the Adult Zebrafish Telencephalon. Di Giaimo R; Aschenbroich S; Ninkovic J Methods Mol Biol; 2019; 1938():49-66. PubMed ID: 30617972 [TBL] [Abstract][Full Text] [Related]
14. Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Diotel N; Lübke L; Strähle U; Rastegar S Front Neurosci; 2020; 14():568930. PubMed ID: 33071740 [TBL] [Abstract][Full Text] [Related]
15. Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Kizil C; Kyritsis N; Dudczig S; Kroehne V; Freudenreich D; Kaslin J; Brand M Dev Cell; 2012 Dec; 23(6):1230-7. PubMed ID: 23168169 [TBL] [Abstract][Full Text] [Related]
16. Cellular Mechanisms Participating in Brain Repair of Adult Zebrafish and Mammals after Injury. Ghaddar B; Lübke L; Couret D; Rastegar S; Diotel N Cells; 2021 Feb; 10(2):. PubMed ID: 33672842 [TBL] [Abstract][Full Text] [Related]
17. Prosaposin maintains adult neural stem cells in a state associated with deep quiescence. Labusch M; Thetiot M; Than-Trong E; Morizet D; Coolen M; Varet H; Legendre R; Ortica S; Mancini L; Bally-Cuif L Stem Cell Reports; 2024 Apr; 19(4):515-528. PubMed ID: 38518783 [TBL] [Abstract][Full Text] [Related]
18. Expression of hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain. Chapouton P; Webb KJ; Stigloher C; Alunni A; Adolf B; Hesl B; Topp S; Kremmer E; Bally-Cuif L J Comp Neurol; 2011 Jun; 519(9):1748-69. PubMed ID: 21452233 [TBL] [Abstract][Full Text] [Related]
19. Regenerative response following stab injury in the adult zebrafish telencephalon. März M; Schmidt R; Rastegar S; Strähle U Dev Dyn; 2011 Sep; 240(9):2221-31. PubMed ID: 22016188 [TBL] [Abstract][Full Text] [Related]
20. Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Rothenaigner I; Krecsmarik M; Hayes JA; Bahn B; Lepier A; Fortin G; Götz M; Jagasia R; Bally-Cuif L Development; 2011 Apr; 138(8):1459-69. PubMed ID: 21367818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]