BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 35204292)

  • 1. Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae
    Curcuraci E; Manuguerra S; Messina CM; Arena R; Renda G; Ioannou T; Amato V; Hellio C; Barba FJ; Santulli A
    Antioxidants (Basel); 2022 Feb; 11(2):. PubMed ID: 35204292
    [No Abstract]   [Full Text] [Related]  

  • 2. Exploring the potential of photosynthetic induction factor for the commercial production of fucoxanthin in Phaeodactylum tricornutum.
    Li S; Zheng X; Fang Q; Gong Y; Wang H
    Bioprocess Biosyst Eng; 2021 Aug; 44(8):1769-1779. PubMed ID: 33844074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom
    Yang ZK; Ma YH; Zheng JW; Yang WD; Liu JS; Li HY
    J Appl Phycol; 2014; 26(1):73-82. PubMed ID: 24600163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of
    Fan S; Li Y; Wang Q; Jin M; Yu M; Zhao H; Zhou C; Xu J; Li B; Li X
    Appl Environ Microbiol; 2024 Jun; 90(6):e0206823. PubMed ID: 38786362
    [No Abstract]   [Full Text] [Related]  

  • 5. Elevated CO
    Wu S; Gu W; Huang A; Li Y; Kumar M; Lim PE; Huan L; Gao S; Wang G
    Microb Cell Fact; 2019 Sep; 18(1):161. PubMed ID: 31547820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum.
    Alipanah L; Rohloff J; Winge P; Bones AM; Brembu T
    J Exp Bot; 2015 Oct; 66(20):6281-96. PubMed ID: 26163699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiochemical and molecular responses of the diatom Phaeodactylum tricornutum to illumination transitions.
    Ding W; Ye Y; Yu L; Liu M; Liu J
    Biotechnol Biofuels Bioprod; 2023 Jun; 16(1):103. PubMed ID: 37328885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phaeodactylum tricornutum photorespiration takes part in glycerol metabolism and is important for nitrogen-limited response.
    Huang A; Liu L; Yang C; Wang G
    Biotechnol Biofuels; 2015; 8():73. PubMed ID: 25960767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom
    Yang R; Wei D
    Front Bioeng Biotechnol; 2020; 8():820. PubMed ID: 32760713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined artificial high-silicate medium and LED illumination promote carotenoid accumulation in the marine diatom Phaeodactylum tricornutum.
    Yi Z; Su Y; Cherek P; Nelson DR; Lin J; Rolfsson O; Wu H; Salehi-Ashtiani K; Brynjolfsson S; Fu W
    Microb Cell Fact; 2019 Dec; 18(1):209. PubMed ID: 31791335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxic effect of nickel on microalgae Phaeodactylum tricornutum (Bacillariophyceae).
    Guo R; Lu D; Liu C; Hu J; Wang P; Dai X
    Ecotoxicology; 2022 Jul; 31(5):746-760. PubMed ID: 35364763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The identification of a correlation between lipid content in the model diatom Phaeodactylum tricornutum and pH treatment strategies.
    Zhang H; Yin W; Liao G; Liu J; Dong G; Wang J; Guo W; Ngo HH
    Sci Total Environ; 2024 Mar; 915():169897. PubMed ID: 38184250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of ammonium and high light intensity on the accumulation of lipids in
    Huete-Ortega M; Okurowska K; Kapoore RV; Johnson MP; Gilmour DJ; Vaidyanathan S
    Biotechnol Biofuels; 2018; 11():60. PubMed ID: 29541157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil and eicosapentaenoic acid production by the diatom Phaeodactylum tricornutum cultivated outdoors in Green Wall Panel (GWP®) reactors.
    Rodolfi L; Biondi N; Guccione A; Bassi N; D'Ottavio M; Arganaraz G; Tredici MR
    Biotechnol Bioeng; 2017 Oct; 114(10):2204-2210. PubMed ID: 28627710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Nitrate Supplementation in
    Afonso C; Bragança AR; Rebelo BA; Serra TS; Abranches R
    Foods; 2022 Feb; 11(4):. PubMed ID: 35206051
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum.
    Yu SJ; Shen XF; Ge HQ; Zheng H; Chu FF; Hu H; Zeng RJ
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6927-6934. PubMed ID: 27260287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diel biochemical and photosynthetic monitorization of Skeletonema costatum and Phaeodactylum tricornutum grown in outdoor pilot-scale flat panel photobioreactors.
    Maia IB; Carneiro M; Magina T; Malcata FX; Otero A; Navalho J; Varela J; Pereira H
    J Biotechnol; 2022 Jan; 343():110-119. PubMed ID: 34856224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic and biochemical responses to different concentrations of CO
    Wu S; Gu W; Jia S; Wang L; Wang L; Liu X; Zhou L; Huang A; Wang G
    Biotechnol Biofuels; 2021 Dec; 14(1):235. PubMed ID: 34906223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the Impact of Nitrogen Availability: A Limiting Factor for Enhancing Fucoxanthin Productivity in Microalgae Cultivation.
    Truong TQ; Park YJ; Winarto J; Huynh PK; Moon J; Choi YB; Song DG; Koo SY; Kim SM
    Mar Drugs; 2024 Feb; 22(2):. PubMed ID: 38393064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperaccumulation of fucoxanthin by enhancing methylerythritol phosphate pathway in Phaeodactylum tricornutum.
    Hao TB; Lu Y; Zhang ZH; Liu SF; Wang X; Yang WD; Balamurugan S; Li HY
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8783-8793. PubMed ID: 34741642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.