These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35204436)

  • 1. Ensembles of Convolutional Neural Networks for Survival Time Estimation of High-Grade Glioma Patients from Multimodal MRI.
    Ben Ahmed K; Hall LO; Goldgof DB; Gatenby R
    Diagnostics (Basel); 2022 Jan; 12(2):. PubMed ID: 35204436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario.
    Di Ieva A; Russo C; Liu S; Jian A; Bai MY; Qian Y; Magnussen JS
    Neuroradiology; 2021 Aug; 63(8):1253-1262. PubMed ID: 33501512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpreting deep learning models for glioma survival classification using visualization and textual explanations.
    Osadebey M; Liu Q; Fuster-Garcia E; Emblem KE
    BMC Med Inform Decis Mak; 2023 Oct; 23(1):225. PubMed ID: 37853371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning.
    Sun L; Zhang S; Chen H; Luo L
    Front Neurosci; 2019; 13():810. PubMed ID: 31474816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated MRI based pipeline for segmentation and prediction of grade, IDH mutation and 1p19q co-deletion in glioma.
    Decuyper M; Bonte S; Deblaere K; Van Holen R
    Comput Med Imaging Graph; 2021 Mar; 88():101831. PubMed ID: 33482430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification.
    Mzoughi H; Njeh I; Wali A; Slima MB; BenHamida A; Mhiri C; Mahfoudhe KB
    J Digit Imaging; 2020 Aug; 33(4):903-915. PubMed ID: 32440926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review.
    Buchlak QD; Esmaili N; Leveque JC; Bennett C; Farrokhi F; Piccardi M
    J Clin Neurosci; 2021 Jul; 89():177-198. PubMed ID: 34119265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal MRI Image Decision Fusion-Based Network for Glioma Classification.
    Guo S; Wang L; Chen Q; Wang L; Zhang J; Zhu Y
    Front Oncol; 2022; 12():819673. PubMed ID: 35280828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D brain glioma segmentation in MRI through integrating multiple densely connected 2D convolutional neural networks.
    Zhang X; Hu Y; Chen W; Huang G; Nie S
    J Zhejiang Univ Sci B; 2021 Jun; 22(6):462-475. PubMed ID: 34128370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain tumor segmentation and grading of lower-grade glioma using deep learning in MRI images.
    Naser MA; Deen MJ
    Comput Biol Med; 2020 Jun; 121():103758. PubMed ID: 32568668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.
    Cui S; Mao L; Jiang J; Liu C; Xiong S
    J Healthc Eng; 2018; 2018():4940593. PubMed ID: 29755716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks.
    Ge C; Gu IY; Jakola AS; Yang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5894-5897. PubMed ID: 30441677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages.
    Nie D; Lu J; Zhang H; Adeli E; Wang J; Yu Z; Liu L; Wang Q; Wu J; Shen D
    Sci Rep; 2019 Jan; 9(1):1103. PubMed ID: 30705340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SurvNet: A low-complexity convolutional neural network for survival time classification of patients with glioblastoma.
    Lyu Q; Parreno-Centeno M; Papa JP; Öztürk-Isik E; Booth TC; Costen F
    Heliyon; 2024 Jun; 10(12):e32870. PubMed ID: 38988550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics-based convolutional neural network for brain tumor segmentation on multiparametric magnetic resonance imaging.
    Prasanna P; Karnawat A; Ismail M; Madabhushi A; Tiwari P
    J Med Imaging (Bellingham); 2019 Apr; 6(2):024005. PubMed ID: 31093517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully Automatic Brain Tumor Segmentation using End-To-End Incremental Deep Neural Networks in MRI images.
    Naceur MB; Saouli R; Akil M; Kachouri R
    Comput Methods Programs Biomed; 2018 Nov; 166():39-49. PubMed ID: 30415717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain MR Image Classification for Glioma Tumor detection using Deep Convolutional Neural Network Features.
    Latif G; Iskandar DNFA; Alghazo J; Butt MM
    Curr Med Imaging; 2021; 17(1):56-63. PubMed ID: 32160848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI.
    Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J
    Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.