These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 35204673)
1. The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Mangum K; Gallagher K; Davis FM Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204673 [TBL] [Abstract][Full Text] [Related]
2. The potential role of DNA methylation in the pathogenesis of abdominal aortic aneurysm. Toghill BJ; Saratzis A; Harrison SC; Verissimo AR; Mallon EB; Bown MJ Atherosclerosis; 2015 Jul; 241(1):121-9. PubMed ID: 25974102 [TBL] [Abstract][Full Text] [Related]
3. Genetic and epigenetic mechanisms and their possible role in abdominal aortic aneurysm. Krishna SM; Dear AE; Norman PE; Golledge J Atherosclerosis; 2010 Sep; 212(1):16-29. PubMed ID: 20347091 [TBL] [Abstract][Full Text] [Related]
4. Epigenetic Mechanisms in Monocytes/Macrophages Regulate Inflammation in Cardiometabolic and Vascular Disease. Davis FM; Gallagher KA Arterioscler Thromb Vasc Biol; 2019 Apr; 39(4):623-634. PubMed ID: 30760015 [TBL] [Abstract][Full Text] [Related]
5. Genetic and epigenetic regulation of abdominal aortic aneurysms. Mangum KD; Farber MA Clin Genet; 2020 Jun; 97(6):815-826. PubMed ID: 31957007 [TBL] [Abstract][Full Text] [Related]
6. Epigenetic regulation of regulatory T cells in patients with abdominal aortic aneurysm. Xia Q; Zhang J; Han Y; Zhang X; Jiang H; Lun Y; Wu X; Gang Q; Liu Z; Böckler D; Duan Z; Xin S FEBS Open Bio; 2019 Jun; 9(6):1137-1143. PubMed ID: 31001930 [TBL] [Abstract][Full Text] [Related]
7. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Gurung R; Choong AM; Woo CC; Foo R; Sorokin V Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878347 [TBL] [Abstract][Full Text] [Related]
8. Monocytes and macrophages in abdominal aortic aneurysm. Raffort J; Lareyre F; Clément M; Hassen-Khodja R; Chinetti G; Mallat Z Nat Rev Cardiol; 2017 Aug; 14(8):457-471. PubMed ID: 28406184 [TBL] [Abstract][Full Text] [Related]
9. Abnormal Epigenetic Modifications in Peripheral T Cells from Patients with Abdominal Aortic Aneurysm Are Correlated with Disease Development. Jiang H; Xia Q; Xin S; Lun Y; Song J; Tang D; Liu X; Ren J; Duan Z; Zhang J J Vasc Res; 2015; 52(6):404-13. PubMed ID: 27194055 [TBL] [Abstract][Full Text] [Related]
10. Endovascular repair of abdominal aortic aneurysm: an evidence-based analysis. Medical Advisory Secretariat Ont Health Technol Assess Ser; 2002; 2(1):1-46. PubMed ID: 23074438 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Myeloid Cells and Noncoding RNA in Abdominal Aortic Aneurysm Disease. Knappich C; Spin JM; Eckstein HH; Tsao PS; Maegdefessel L Antioxid Redox Signal; 2020 Sep; 33(9):602-620. PubMed ID: 31989839 [No Abstract] [Full Text] [Related]
12. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Summerhill VI; Sukhorukov VN; Eid AH; Nedosugova LV; Sobenin IA; Orekhov AN Biomol Concepts; 2021 Jun; 12(1):55-67. PubMed ID: 34115932 [TBL] [Abstract][Full Text] [Related]
13. Epigenetic modifications in abdominal aortic aneurysms: from basic to clinical. Liu Y; Sun X; Gou Z; Deng Z; Zhang Y; Zhao P; Sun W; Bai Y; Jing Y Front Cardiovasc Med; 2024; 11():1394889. PubMed ID: 38895538 [TBL] [Abstract][Full Text] [Related]
14. Basic research studies to understand aneurysm disease. Boddy AM; Lenk GM; Lillvis JH; Nischan J; Kyo Y; Kuivaniemi H Drug News Perspect; 2008 Apr; 21(3):142-8. PubMed ID: 18560612 [TBL] [Abstract][Full Text] [Related]
15. Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm. Shen G; Sun Q; Yao Y; Li S; Liu G; Yuan C; Li H; Xu Y; Wang H Atherosclerosis; 2020 Mar; 297():47-54. PubMed ID: 32078829 [TBL] [Abstract][Full Text] [Related]
16. BAF60a Deficiency in Vascular Smooth Muscle Cells Prevents Abdominal Aortic Aneurysm by Reducing Inflammation and Extracellular Matrix Degradation. Chang Z; Zhao G; Zhao Y; Lu H; Xiong W; Liang W; Sun J; Wang H; Zhu T; Rom O; Guo Y; Fan Y; Chang L; Yang B; Garcia-Barrio MT; Lin JD; Chen YE; Zhang J Arterioscler Thromb Vasc Biol; 2020 Oct; 40(10):2494-2507. PubMed ID: 32787523 [TBL] [Abstract][Full Text] [Related]
17. Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms. Sho E; Sho M; Nanjo H; Kawamura K; Masuda H; Dalman RL J Vasc Surg; 2005 May; 41(5):844-52. PubMed ID: 15886670 [TBL] [Abstract][Full Text] [Related]
18. The Detrimental Role of Intraluminal Thrombus Outweighs Protective Advantage in Abdominal Aortic Aneurysm Pathogenesis: The Implications for the Anti-Platelet Therapy. Ma X; Xia S; Liu G; Song C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883500 [TBL] [Abstract][Full Text] [Related]
19. Histone acetylation and histone acetyltransferases show significant alterations in human abdominal aortic aneurysm. Han Y; Tanios F; Reeps C; Zhang J; Schwamborn K; Eckstein HH; Zernecke A; Pelisek J Clin Epigenetics; 2016; 8():3. PubMed ID: 26767057 [TBL] [Abstract][Full Text] [Related]
20. Profiling of Histone Modifications Reveals Epigenomic Dynamics During Abdominal Aortic Aneurysm Formation in Mouse Models. Greenway J; Gilreath N; Patel S; Horimatsu T; Moses M; Kim D; Reid L; Ogbi M; Shi Y; Lu XY; Shukla M; Lee R; Huo Y; Young L; Kim HW; Weintraub NL Front Cardiovasc Med; 2020; 7():595011. PubMed ID: 33195484 [No Abstract] [Full Text] [Related] [Next] [New Search]