BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35204821)

  • 1. Terminalin from African Mango (
    Yoon SY; Kim J; Lee BS; Baek SC; Chung SJ; Kim KH
    Biomolecules; 2022 Feb; 12(2):. PubMed ID: 35204821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance.
    Yoon SY; Kang HJ; Ahn D; Hwang JY; Kwon SJ; Chung SJ
    Bioorg Chem; 2019 Sep; 90():103087. PubMed ID: 31284101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methyl Syringate Stimulates Glucose Uptake by Inhibiting Protein Tyrosine Phosphatases Relevant to Insulin Resistance.
    Ahn D; Kwon J; Song S; Lee J; Yoon S; Chung SJ
    Life (Basel); 2023 Jun; 13(6):. PubMed ID: 37374154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nepetin Acts as a Multi-Targeting Inhibitor of Protein Tyrosine Phosphatases Relevant to Insulin Resistance.
    Yoon SY; Ahn D; Kim JK; Seo SO; Chung SJ
    Chem Biodivers; 2022 Jan; 19(1):e202100600. PubMed ID: 34725898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ginkgolic acid as a dual-targeting inhibitor for protein tyrosine phosphatases relevant to insulin resistance.
    Yoon SY; Lee JH; Kwon SJ; Kang HJ; Chung SJ
    Bioorg Chem; 2018 Dec; 81():264-269. PubMed ID: 30153591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance.
    Yoon SY; Yu JS; Hwang JY; So HM; Seo SO; Kim JK; Jang TS; Chung SJ; Kim KH
    Molecules; 2021 Mar; 26(6):. PubMed ID: 33799458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical studies of enzyme-induced browning of African bush mango (
    Adeseko CJ; Sanni DM; Lawal OT
    Prep Biochem Biotechnol; 2022; 52(7):835-844. PubMed ID: 34762005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGOB131, a novel seed extract of the West African plant Irvingia gabonensis, significantly reduces body weight and improves metabolic parameters in overweight humans in a randomized double-blind placebo controlled investigation.
    Ngondi JL; Etoundi BC; Nyangono CB; Mbofung CM; Oben JE
    Lipids Health Dis; 2009 Mar; 8():7. PubMed ID: 19254366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flavonoid glycosides and ellagic acid cognates from defatted African mango (
    Zulfiqar F; Ali Z; Viljoen AM; Chittiboyina AG; Khan IA
    Nat Prod Res; 2023; 37(17):2878-2887. PubMed ID: 36318869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidiabetic Potential of
    Saleem M; Tanvir M; Akhtar MF; Iqbal M; Saleem A
    Medicina (Kaunas); 2019 Jul; 55(7):. PubMed ID: 31323919
    [No Abstract]   [Full Text] [Related]  

  • 11. The Effects of
    Lee J; Chung M; Fu Z; Choi J; Lee HJ
    J Am Coll Nutr; 2020 Jul; 39(5):388-396. PubMed ID: 31855111
    [No Abstract]   [Full Text] [Related]  

  • 12. Ultra high-performance liquid chromatography with high-resolution mass spectrometry analysis of African mango (Irvingia gabonensis) seeds, extract, and related dietary supplements.
    Sun J; Chen P
    J Agric Food Chem; 2012 Sep; 60(35):8703-9. PubMed ID: 22880691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein tyrosine phosphatases (PTPs) in diabetes: causes and therapeutic opportunities.
    Sharma C; Kim Y; Ahn D; Chung SJ
    Arch Pharm Res; 2021 Mar; 44(3):310-321. PubMed ID: 33590390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Anti-Diabetic Potential of Quercetagitrin through Dual Inhibition of PTPN6 and PTPN9.
    Gone GB; Go G; Nam G; Jeong W; Kim H; Lee S; Chung SJ
    Nutrients; 2024 Feb; 16(5):. PubMed ID: 38474775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidiabetic properties of mango in animal models and humans: A systematic review.
    Zarasvand SA; Mullins AP; Arjmandi B; Haley-Zitlin V
    Nutr Res; 2023 Mar; 111():73-89. PubMed ID: 36841190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antidiabetic activity of perylenequinonoid-rich extract from Shiraia bambusicola in KK-Ay mice with spontaneous type 2 diabetes mellitus.
    Huang M; Zhao P; Xiong M; Zhou Q; Zheng S; Ma X; Xu C; Yang J; Yang X; Zhang TC
    J Ethnopharmacol; 2016 Sep; 191():71-81. PubMed ID: 27286915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Irvingia gabonensis on Metabolic Syndrome, Insulin Sensitivity, and Insulin Secretion.
    Méndez-Del Villar M; González-Ortiz M; Martínez-Abundis E; Pérez-Rubio KG; Cortez-Navarrete M
    J Med Food; 2018 Jun; 21(6):568-574. PubMed ID: 29336718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytochemical and antimicrobial activities of the wild mango-Irvingia gabonensis extracts and fractions.
    Fadare DA; Ajaiyeoba EO
    Afr J Med Med Sci; 2008 Jun; 37(2):119-24. PubMed ID: 18939394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Research progress of several protein tyrosine phosphatases in diabetes].
    Chen M; Sun JP; Liu J; Yu X
    Sheng Li Xue Bao; 2010 Apr; 62(2):179-89. PubMed ID: 20401454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of protein tyrosine phosphatases and dual-specificity phosphatases in mammalian spermatozoa and their role in sperm motility and protein tyrosine phosphorylation.
    González-Fernández L; Ortega-Ferrusola C; Macias-Garcia B; Salido GM; Peña FJ; Tapia JA
    Biol Reprod; 2009 Jun; 80(6):1239-52. PubMed ID: 19211810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.