These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35205226)

  • 61. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress.
    Guo J; Li C; Zhang X; Li Y; Zhang D; Shi Y; Song Y; Li Y; Yang D; Wang T
    Plant Sci; 2020 Mar; 292():110380. PubMed ID: 32005385
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hormonal regulation of root hair growth and responses to the environment in Arabidopsis.
    Vissenberg K; Claeijs N; Balcerowicz D; Schoenaers S
    J Exp Bot; 2020 Apr; 71(8):2412-2427. PubMed ID: 31993645
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Crop Phenomics and High-Throughput Phenotyping: Past Decades, Current Challenges, and Future Perspectives.
    Yang W; Feng H; Zhang X; Zhang J; Doonan JH; Batchelor WD; Xiong L; Yan J
    Mol Plant; 2020 Feb; 13(2):187-214. PubMed ID: 31981735
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crop Improvement from Phenotyping Roots: Highlights Reveal Expanding Opportunities.
    Tracy SR; Nagel KA; Postma JA; Fassbender H; Wasson A; Watt M
    Trends Plant Sci; 2020 Jan; 25(1):105-118. PubMed ID: 31806535
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana.
    Chang J; Li X; Fu W; Wang J; Yong Y; Shi H; Ding Z; Kui H; Gou X; He K; Li J
    Cell Res; 2019 Dec; 29(12):984-993. PubMed ID: 31601978
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular and Environmental Regulation of Root Development.
    Motte H; Vanneste S; Beeckman T
    Annu Rev Plant Biol; 2019 Apr; 70():465-488. PubMed ID: 30822115
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Root phenotypes for improved nutrient capture: an underexploited opportunity for global agriculture.
    Lynch JP
    New Phytol; 2019 Jul; 223(2):548-564. PubMed ID: 30746704
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize.
    Schaefer RJ; Michno JM; Jeffers J; Hoekenga O; Dilkes B; Baxter I; Myers CL
    Plant Cell; 2018 Dec; 30(12):2922-2942. PubMed ID: 30413654
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ectopic expression of ARGOS8 reveals a role for ethylene in root-lodging resistance in maize.
    Shi J; Drummond BJ; Habben JE; Brugire N; Weers BP; Hakimi SM; Lafitte HR; Schussler JR; Mo H; Beatty M; Zastrow-Hayes G; O'Neill D
    Plant J; 2019 Jan; 97(2):378-390. PubMed ID: 30326542
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The Quantitative Genetic Control of Root Architecture in Maize.
    Bray AL; Topp CN
    Plant Cell Physiol; 2018 Oct; 59(10):1919-1930. PubMed ID: 30020530
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Releasing the Cytokinin Brakes on Root Growth.
    Julkowska M
    Plant Physiol; 2018 Jul; 177(3):865-866. PubMed ID: 30006453
    [No Abstract]   [Full Text] [Related]  

  • 72. Genome-wide association studies of doubled haploid exotic introgression lines for root system architecture traits in maize (Zea mays L.).
    Sanchez DL; Liu S; Ibrahim R; Blanco M; Lübberstedt T
    Plant Sci; 2018 Mar; 268():30-38. PubMed ID: 29362081
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function.
    Luo J; Zhou JJ; Zhang JZ
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29337875
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Genetic Control of Root System Development in Maize.
    Hochholdinger F; Yu P; Marcon C
    Trends Plant Sci; 2018 Jan; 23(1):79-88. PubMed ID: 29170008
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shoot-Root Communication in Flowering Plants.
    Ko D; Helariutta Y
    Curr Biol; 2017 Sep; 27(17):R973-R978. PubMed ID: 28898670
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height.
    Li Z; Zhang X; Zhao Y; Li Y; Zhang G; Peng Z; Zhang J
    Plant Biotechnol J; 2018 Jan; 16(1):86-99. PubMed ID: 28499064
    [TBL] [Abstract][Full Text] [Related]  

  • 77. CYTOKININ RESPONSE FACTOR2 (CRF2) and CRF3 Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis.
    Jeon J; Cho C; Lee MR; Van Binh N; Kim J
    Plant Cell; 2016 Aug; 28(8):1828-43. PubMed ID: 27432872
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis.
    Pernisova M; Prat T; Grones P; Harustiakova D; Matonohova M; Spichal L; Nodzynski T; Friml J; Hejatko J
    New Phytol; 2016 Oct; 212(2):497-509. PubMed ID: 27322763
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.
    Shi J; Drummond BJ; Wang H; Archibald RL; Habben JE
    Plant Physiol; 2016 Aug; 171(4):2783-97. PubMed ID: 27268962
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.
    Das A; Schneider H; Burridge J; Ascanio AK; Wojciechowski T; Topp CN; Lynch JP; Weitz JS; Bucksch A
    Plant Methods; 2015; 11():51. PubMed ID: 26535051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.