BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35205273)

  • 1. The Identification of
    Ku YS; Lin X; Fan K; Cheng SS; Chan TF; Chung G; Lam HM
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and identification of natural antisense transcripts and their small RNAs in soybean (Glycine max).
    Zheng H; Qiyan J; Zhiyong N; Hui Z
    BMC Genomics; 2013 Apr; 14():280. PubMed ID: 23617936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sense-antisense miRNA pairs constitute an elaborate reciprocal regulatory circuit.
    Song Y; Li L; Yang W; Fu Q; Chen W; Fang Z; Li W; Gu N; Zhang R
    Genome Res; 2020 May; 30(5):661-672. PubMed ID: 32424073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A genome-wide investigation of expression characteristics of natural antisense transcripts in liver and muscle samples of pigs.
    Chen C; Wei R; Qiao R; Ren J; Yang H; Liu C; Huang L
    PLoS One; 2012; 7(12):e52433. PubMed ID: 23285040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide analysis of rice cis-natural antisense transcription under cadmium exposure using strand-specific RNA-Seq.
    Oono Y; Yazawa T; Kanamori H; Sasaki H; Mori S; Matsumoto T
    BMC Genomics; 2017 Oct; 18(1):761. PubMed ID: 28985711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide analysis of MATE transporters and expression patterns of a subgroup of MATE genes in response to aluminum toxicity in soybean.
    Liu J; Li Y; Wang W; Gai J; Li Y
    BMC Genomics; 2016 Mar; 17():223. PubMed ID: 26968518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum.
    Siegel TN; Hon CC; Zhang Q; Lopez-Rubio JJ; Scheidig-Benatar C; Martins RM; Sismeiro O; Coppée JY; Scherf A
    BMC Genomics; 2014 Feb; 15(1):150. PubMed ID: 24559473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis.
    Jin H; Vacic V; Girke T; Lonardi S; Zhu JK
    BMC Mol Biol; 2008 Jan; 9():6. PubMed ID: 18194570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale analysis of antisense transcription in wheat using the Affymetrix GeneChip Wheat Genome Array.
    Coram TE; Settles ML; Chen X
    BMC Genomics; 2009 May; 10():253. PubMed ID: 19480707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data.
    Li S; Liberman LM; Mukherjee N; Benfey PN; Ohler U
    Genome Res; 2013 Oct; 23(10):1730-9. PubMed ID: 23816784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sense and antisense transcripts of convergent gene pairs in Arabidopsis thaliana can share a common polyadenylation region.
    Zubko E; Kunova A; Meyer P
    PLoS One; 2011 Feb; 6(2):e16769. PubMed ID: 21311762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strand-specific RNA-seq reveals widespread occurrence of novel cis-natural antisense transcripts in rice.
    Lu T; Zhu C; Lu G; Guo Y; Zhou Y; Zhang Z; Zhao Y; Li W; Lu Y; Tang W; Feng Q; Han B
    BMC Genomics; 2012 Dec; 13():721. PubMed ID: 23259405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide Identification and Characterization of Natural Antisense Transcripts by Strand-specific RNA Sequencing in Ganoderma lucidum.
    Shao J; Chen H; Yang D; Jiang M; Zhang H; Wu B; Li J; Yuan L; Liu C
    Sci Rep; 2017 Jul; 7(1):5711. PubMed ID: 28720793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antisense transcripts with rice full-length cDNAs.
    Osato N; Yamada H; Satoh K; Ooka H; Yamamoto M; Suzuki K; Kawai J; Carninci P; Ohtomo Y; Murakami K; Matsubara K; Kikuchi S; Hayashizaki Y
    Genome Biol; 2003; 5(1):R5. PubMed ID: 14709177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis.
    Wang H; Chung PJ; Liu J; Jang IC; Kean MJ; Xu J; Chua NH
    Genome Res; 2014 Mar; 24(3):444-53. PubMed ID: 24402519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of soybean microRNAs and their targets.
    Zhang B; Pan X; Stellwag EJ
    Planta; 2008 Dec; 229(1):161-82. PubMed ID: 18815805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of trans-antisense transcripts in Arabidopsis thaliana.
    Wang H; Chua NH; Wang XJ
    Genome Biol; 2006; 7(10):R92. PubMed ID: 17040561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QTLs Regulating the Contents of Antioxidants, Phenolics, and Flavonoids in Soybean Seeds Share a Common Genomic Region.
    Li MW; Muñoz NB; Wong CF; Wong FL; Wong KS; Wong JW; Qi X; Li KP; Ng MS; Lam HM
    Front Plant Sci; 2016; 7():854. PubMed ID: 27379137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide view and characterization of natural antisense transcripts in Cannabis Sativa L.
    Zhang C; Jiang M; Liu J; Wu B; Liu C
    Plant Mol Biol; 2024 Apr; 114(3):47. PubMed ID: 38632206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome analysis of smut fungi reveals widespread intergenic transcription and conserved antisense transcript expression.
    Donaldson ME; Ostrowski LA; Goulet KM; Saville BJ
    BMC Genomics; 2017 May; 18(1):340. PubMed ID: 28464849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.