These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35205448)

  • 1. Representation Learning for Dynamic Functional Connectivities via Variational Dynamic Graph Latent Variable Models.
    Huang Y; Yu Z
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DyVGRNN: DYnamic mixture Variational Graph Recurrent Neural Networks.
    Niknam G; Molaei S; Zare H; Pan S; Jalili M; Zhu T; Clifton D
    Neural Netw; 2023 Aug; 165():596-610. PubMed ID: 37364470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Causal Explanation Based Diffusion-Variational Graph Neural Network for Spatiotemporal Forecasting.
    Liang G; Tiwari P; Nowaczyk S; Byttner S; Alonso-Fernandez F
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; PP():. PubMed ID: 38980780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Associating Latent Representations With Cognitive Maps via Hyperspherical Space for Neural Population Spikes.
    Huang Y; Yu ZL
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2886-2895. PubMed ID: 36215357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Connectivity Representation Learning Network for Major Depressive Disorder Diagnosis.
    Kong Y; Wang W; Liu X; Gao S; Hou Z; Xie C; Zhang Z; Yuan Y
    IEEE Trans Med Imaging; 2023 Oct; 42(10):3012-3024. PubMed ID: 37155407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graph-in-Graph (GiG): Learning interpretable latent graphs in non-Euclidean domain for biological and healthcare applications.
    Zaripova K; Cosmo L; Kazi A; Ahmadi SA; Bronstein MM; Navab N
    Med Image Anal; 2023 Aug; 88():102839. PubMed ID: 37263109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. History Marginalization Improves Forecasting in Variational Recurrent Neural Networks.
    Qiu C; Mandt S; Rudolph M
    Entropy (Basel); 2021 Nov; 23(12):. PubMed ID: 34945869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation.
    Kwon Y; Yoo J; Choi YS; Son WJ; Lee D; Kang S
    J Cheminform; 2019 Nov; 11(1):70. PubMed ID: 33430985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expressive architectures enhance interpretability of dynamics-based neural population models.
    Sedler AR; Versteeg C; Pandarinath C
    Neuron Behav Data Anal Theory; 2023; 2023():. PubMed ID: 38699512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Latent neighborhood-based heterogeneous graph representation.
    Xiao Y; Quan P; Lei M; Niu L
    Neural Netw; 2022 Oct; 154():413-424. PubMed ID: 35952539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. REAL-TIME VARIATIONAL METHOD FOR LEARNING NEURAL TRAJECTORY AND ITS DYNAMICS.
    Dowling M; Zhao Y; Park IM
    ArXiv; 2023 May; ():. PubMed ID: 37292472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multimodal dynamical variational autoencoder for audiovisual speech representation learning.
    Sadok S; Leglaive S; Girin L; Alameda-Pineda X; Séguier R
    Neural Netw; 2024 Apr; 172():106120. PubMed ID: 38266474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RegraphGAN: A graph generative adversarial network model for dynamic network anomaly detection.
    Guo D; Liu Z; Li R
    Neural Netw; 2023 Sep; 166():273-285. PubMed ID: 37531727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph-based prediction of Protein-protein interactions with attributed signed graph embedding.
    Yang F; Fan K; Song D; Lin H
    BMC Bioinformatics; 2020 Jul; 21(1):323. PubMed ID: 32693790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference and Learning in a Latent Variable Model for Beta Distributed Interval Data.
    Mousavi H; Buhl M; Guiraud E; Drefs J; Lücke J
    Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33947060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning dynamic graph embeddings for accurate detection of cognitive state changes in functional brain networks.
    Lin Y; Yang D; Hou J; Yan C; Kim M; Laurienti PJ; Wu G
    Neuroimage; 2021 Apr; 230():117791. PubMed ID: 33545348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A representation learning model based on variational inference and graph autoencoder for predicting lncRNA-disease associations.
    Shi Z; Zhang H; Jin C; Quan X; Yin Y
    BMC Bioinformatics; 2021 Mar; 22(1):136. PubMed ID: 33745450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CommPOOL: An interpretable graph pooling framework for hierarchical graph representation learning.
    Tang H; Ma G; He L; Huang H; Zhan L
    Neural Netw; 2021 Nov; 143():669-677. PubMed ID: 34375808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning dynamic graph representations through timespan view contrasts.
    Xu Y; Peng Z; Shi B; Hua X; Dong B
    Neural Netw; 2024 Aug; 176():106384. PubMed ID: 38754286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.