These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 35205591)
1. The Random Plots Graph Generation Model for Studying Systems with Unknown Connection Structures. Ivanko E; Chernoskutov M Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205591 [TBL] [Abstract][Full Text] [Related]
2. Network comparison and the within-ensemble graph distance. Hartle H; Klein B; McCabe S; Daniels A; St-Onge G; Murphy C; Hébert-Dufresne L Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20190744. PubMed ID: 33363435 [TBL] [Abstract][Full Text] [Related]
3. Entropy and distance of random graphs with application to structural pattern recognition. Wong AK; You M IEEE Trans Pattern Anal Mach Intell; 1985 May; 7(5):599-609. PubMed ID: 21869297 [TBL] [Abstract][Full Text] [Related]
4. Random graphs with arbitrary degree distributions and their applications. Newman ME; Strogatz SH; Watts DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026118. PubMed ID: 11497662 [TBL] [Abstract][Full Text] [Related]
5. A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents. Draief M; Ganesh A Discret Event Dyn Syst; 2011; 21(1):41-61. PubMed ID: 32214674 [TBL] [Abstract][Full Text] [Related]
6. Robustness of random graphs based on graph spectra. Wu J; Barahona M; Tan YJ; Deng HZ Chaos; 2012 Dec; 22(4):043101. PubMed ID: 23278036 [TBL] [Abstract][Full Text] [Related]
7. Random line graphs and a linear law for assortativity. Liu D; Trajanovski S; Van Mieghem P Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012816. PubMed ID: 23410397 [TBL] [Abstract][Full Text] [Related]
8. Equitable random graphs. Newman ME; Martin T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052824. PubMed ID: 25493850 [TBL] [Abstract][Full Text] [Related]
9. Spin-glass phase transitions and minimum energy of the random feedback vertex set problem. Qin SM; Zeng Y; Zhou HJ Phys Rev E; 2016 Aug; 94(2-1):022146. PubMed ID: 27627285 [TBL] [Abstract][Full Text] [Related]
10. Relating Vertex and Global Graph Entropy in Randomly Generated Graphs. Tee P; Parisis G; Berthouze L; Wakeman I Entropy (Basel); 2018 Jun; 20(7):. PubMed ID: 33265571 [TBL] [Abstract][Full Text] [Related]
11. Groupies in multitype random graphs. Shang Y Springerplus; 2016; 5(1):989. PubMed ID: 27441125 [TBL] [Abstract][Full Text] [Related]
12. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs. Bizhani G; Grassberger P; Paczuski M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066111. PubMed ID: 22304159 [TBL] [Abstract][Full Text] [Related]
13. Joint large deviation result for empirical measures of the coloured random geometric graphs. Doku-Amponsah K Springerplus; 2016; 5(1):1140. PubMed ID: 27504238 [TBL] [Abstract][Full Text] [Related]
14. Generalization of the small-world effect on a model approaching the Erdős-Rényi random graph. Maier BF Sci Rep; 2019 Jun; 9(1):9268. PubMed ID: 31239466 [TBL] [Abstract][Full Text] [Related]
15. Random graphs with hidden color. Söderberg B Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):015102. PubMed ID: 12935185 [TBL] [Abstract][Full Text] [Related]
16. Entropy of labeled versus unlabeled networks. Paton J; Hartle H; Stepanyants H; van der Hoorn P; Krioukov D Phys Rev E; 2022 Nov; 106(5-1):054308. PubMed ID: 36559397 [TBL] [Abstract][Full Text] [Related]
17. Dual graph convolutional neural network for predicting chemical networks. Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421 [TBL] [Abstract][Full Text] [Related]
18. Misc-GAN: A Multi-scale Generative Model for Graphs. Zhou D; Zheng L; Xu J; He J Front Big Data; 2019; 2():3. PubMed ID: 33693326 [TBL] [Abstract][Full Text] [Related]
19. CD30 cell graphs of Hodgkin lymphoma are not scale-free--an image analysis approach. Schäfer H; Schäfer T; Ackermann J; Dichter N; Döring C; Hartmann S; Hansmann ML; Koch I Bioinformatics; 2016 Jan; 32(1):122-9. PubMed ID: 26363177 [TBL] [Abstract][Full Text] [Related]
20. Community structure and scale-free collections of Erdős-Rényi graphs. Seshadhri C; Kolda TG; Pinar A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056109. PubMed ID: 23004823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]