These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Fungal lipases as biocatalysts: A promising platform in several industrial biotechnology applications. Mahfoudhi A; Benmabrouk S; Fendri A; Sayari A Biotechnol Bioeng; 2022 Dec; 119(12):3370-3392. PubMed ID: 36137755 [TBL] [Abstract][Full Text] [Related]
5. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Ullah M; Xia L; Xie S; Sun S Biotechnol Appl Biochem; 2020 Nov; 67(6):835-851. PubMed ID: 33179815 [TBL] [Abstract][Full Text] [Related]
6. Botryosphaeriales fungi produce extracellular enzymes with biotechnological potential. Esteves AC; Saraiva M; Correia A; Alves A Can J Microbiol; 2014 May; 60(5):332-42. PubMed ID: 24802941 [TBL] [Abstract][Full Text] [Related]
7. Fungal proteases and their pathophysiological effects. Yike I Mycopathologia; 2011 May; 171(5):299-323. PubMed ID: 21259054 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Song R; Zhai Q; Sun L; Huang E; Zhang Y; Zhu Y; Guo Q; Tian Y; Zhao B; Lu H Appl Microbiol Biotechnol; 2019 Sep; 103(17):6919-6932. PubMed ID: 31332488 [TBL] [Abstract][Full Text] [Related]
9. Fungal alkaline proteases and their potential applications in different industries. Pawar KS; Singh PN; Singh SK Front Microbiol; 2023; 14():1138401. PubMed ID: 37065163 [TBL] [Abstract][Full Text] [Related]
11. A biotechnology perspective of fungal proteases. de Souza PM; Bittencourt ML; Caprara CC; de Freitas M; de Almeida RP; Silveira D; Fonseca YM; Ferreira Filho EX; Pessoa Junior A; Magalhães PO Braz J Microbiol; 2015 Jun; 46(2):337-46. PubMed ID: 26273247 [TBL] [Abstract][Full Text] [Related]
12. Genome-based engineering of ligninolytic enzymes in fungi. Asemoloye MD; Marchisio MA; Gupta VK; Pecoraro L Microb Cell Fact; 2021 Jan; 20(1):20. PubMed ID: 33478513 [TBL] [Abstract][Full Text] [Related]
13. Impact of microbial proteases on biotechnological industries. Banerjee G; Ray AK Biotechnol Genet Eng Rev; 2017 Oct; 33(2):119-143. PubMed ID: 29205093 [TBL] [Abstract][Full Text] [Related]
14. Non-homologous end-joining-deficient filamentous fungal strains mitigate the impact of off-target mutations during the application of CRISPR/Cas9. Garrigues S; Peng M; Kun RS; de Vries RP mBio; 2023 Aug; 14(4):e0066823. PubMed ID: 37486124 [TBL] [Abstract][Full Text] [Related]
15. Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Liu Q; Gao R; Li J; Lin L; Zhao J; Sun W; Tian C Biotechnol Biofuels; 2017; 10():1. PubMed ID: 28053662 [TBL] [Abstract][Full Text] [Related]
16. Applications of CRISPR/Cas9 in the Synthesis of Secondary Metabolites in Filamentous Fungi. Jiang C; Lv G; Tu Y; Cheng X; Duan Y; Zeng B; He B Front Microbiol; 2021; 12():638096. PubMed ID: 33643273 [TBL] [Abstract][Full Text] [Related]
17. Progress and Challenges: Development and Implementation of CRISPR/Cas9 Technology in Filamentous Fungi. Wang Q; Coleman JJ Comput Struct Biotechnol J; 2019; 17():761-769. PubMed ID: 31312414 [TBL] [Abstract][Full Text] [Related]
19. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Ozturkoglu-Budak S; Wiebenga A; Bron PA; de Vries RP Int J Food Microbiol; 2016 Nov; 237():17-27. PubMed ID: 27541978 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Shi TQ; Liu GN; Ji RY; Shi K; Song P; Ren LJ; Huang H; Ji XJ Appl Microbiol Biotechnol; 2017 Oct; 101(20):7435-7443. PubMed ID: 28887634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]