These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35206511)
1. Antimicrobial Photodynamic Coatings Reduce the Microbial Burden on Environmental Surfaces in Public Transportation-A Field Study in Buses. Kalb L; Bäßler P; Schneider-Brachert W; Eckl DB Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206511 [TBL] [Abstract][Full Text] [Related]
2. Photodynamic coatings kill bacteria on near-patient surfaces in intensive care units with low light intensities. Kieninger B; Fechter R; Bäumler W; Raab D; Rath A; Caplunik-Pratsch A; Schmid S; Müller T; Schneider-Brachert W; Eichner A J Hosp Infect; 2024 Nov; 153():39-46. PubMed ID: 39181452 [TBL] [Abstract][Full Text] [Related]
3. Novel photodynamic coating reduces the bioburden on near-patient surfaces thereby reducing the risk for onward pathogen transmission: a field study in two hospitals. Eichner A; Holzmann T; Eckl DB; Zeman F; Koller M; Huber M; Pemmerl S; Schneider-Brachert W; Bäumler W J Hosp Infect; 2020 Jan; 104(1):85-91. PubMed ID: 31369806 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Bäumler W; Eckl D; Holzmann T; Schneider-Brachert W Crit Rev Microbiol; 2022 Sep; 48(5):531-564. PubMed ID: 34699296 [TBL] [Abstract][Full Text] [Related]
5. One-year trial evaluating the durability and antimicrobial efficacy of copper in public transportation systems. Williams TC; Asselin E; Mazzulli T; Woznow T; Hamzeh H; Nahkaie D; Waisman D; Stojkova B; Dixon R; Bryce E; Charles M Sci Rep; 2024 Mar; 14(1):6765. PubMed ID: 38514805 [TBL] [Abstract][Full Text] [Related]
6. Self-Disinfecting Copper Beds Sustain Terminal Cleaning and Disinfection Effects throughout Patient Care. Schmidt MG; Attaway HH; Fairey SE; Howard J; Mohr D; Craig S Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31704675 [TBL] [Abstract][Full Text] [Related]
7. Nanosilver/DCOIT-containing surface coating effectively and constantly reduces microbial load in emergency room surfaces. Weber J; Henssler L; Zeman F; Pfeifer C; Alt V; Nerlich M; Huber M; Herbst T; Koller M; Schneider-Brachert W; Kerschbaum M; Holzmann T J Hosp Infect; 2023 May; 135():90-97. PubMed ID: 36958698 [TBL] [Abstract][Full Text] [Related]
8. Methicillin-resistant Staphylococcus aureus in public transportation vehicles (buses): another piece to the epidemiologic puzzle. Lutz JK; van Balen J; Crawford JM; Wilkins JR; Lee J; Nava-Hoet RC; Hoet AE Am J Infect Control; 2014 Dec; 42(12):1285-90. PubMed ID: 25465258 [TBL] [Abstract][Full Text] [Related]
9. Bacterial contamination on touch surfaces in the public transport system and in public areas of a hospital in London. Otter JA; French GL Lett Appl Microbiol; 2009 Dec; 49(6):803-5. PubMed ID: 19818007 [TBL] [Abstract][Full Text] [Related]
10. How Does a Photocatalytic Antimicrobial Coating Affect Environmental Bioburden in Hospitals? Reid M; Whatley V; Spooner E; Nevill AM; Cooper M; Ramsden JJ; Dancer SJ Infect Control Hosp Epidemiol; 2018 Apr; 39(4):398-404. PubMed ID: 29428003 [TBL] [Abstract][Full Text] [Related]
11. Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home. Meakin NS; Bowman C; Lewis MR; Dancer SJ J Hosp Infect; 2012 Feb; 80(2):122-7. PubMed ID: 22196853 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of pulsed-xenon ultraviolet light for disinfection of high-touch surfaces in an Ecuadorian hospital. Villacís JE; Lopez M; Passey D; Santillán MH; Verdezoto G; Trujillo F; Paredes G; Alarcón C; Horvath R; Stibich M BMC Infect Dis; 2019 Jul; 19(1):575. PubMed ID: 31269912 [TBL] [Abstract][Full Text] [Related]
13. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit. Schmidt MG; von Dessauer B; Benavente C; Benadof D; Cifuentes P; Elgueta A; Duran C; Navarrete MS Am J Infect Control; 2016 Feb; 44(2):203-9. PubMed ID: 26553403 [TBL] [Abstract][Full Text] [Related]
14. Improving microbial air quality in air-conditioned mass transport buses by opening the bus exhaust ventilation fans. Luksamijarulkul P; Arunchai N; Luksamijarulkul S; Kaewboonchoo O Southeast Asian J Trop Med Public Health; 2005 Jul; 36(4):1032-8. PubMed ID: 16295565 [TBL] [Abstract][Full Text] [Related]
16. Sustained reduction of microbial burden on common hospital surfaces through introduction of copper. Schmidt MG; Attaway HH; Sharpe PA; John J; Sepkowitz KA; Morgan A; Fairey SE; Singh S; Steed LL; Cantey JR; Freeman KD; Michels HT; Salgado CD J Clin Microbiol; 2012 Jul; 50(7):2217-23. PubMed ID: 22553242 [TBL] [Abstract][Full Text] [Related]
17. A crossover trial of antimicrobial scrubs to reduce methicillin-resistant Staphylococcus aureus burden on healthcare worker apparel. Bearman GM; Rosato A; Elam K; Sanogo K; Stevens MP; Sessler CN; Wenzel RP Infect Control Hosp Epidemiol; 2012 Mar; 33(3):268-75. PubMed ID: 22314064 [TBL] [Abstract][Full Text] [Related]
18. Pre-post evaluation of effects of a titanium dioxide coating on environmental contamination of an intensive care unit: the TITANIC study. de Jong B; Meeder AM; Koekkoek KWAC; Schouten MA; Westers P; van Zanten ARH J Hosp Infect; 2018 Jul; 99(3):256-262. PubMed ID: 28545831 [TBL] [Abstract][Full Text] [Related]
19. ATP bioluminescence assay for evaluating cleaning practices in operating theatres: applicability and limitations. Sanna T; Dallolio L; Raggi A; Mazzetti M; Lorusso G; Zanni A; Farruggia P; Leoni E BMC Infect Dis; 2018 Nov; 18(1):583. PubMed ID: 30453892 [TBL] [Abstract][Full Text] [Related]
20. Copper as an antibacterial material in different facilities. Inkinen J; Mäkinen R; Keinänen-Toivola MM; Nordström K; Ahonen M Lett Appl Microbiol; 2017 Jan; 64(1):19-26. PubMed ID: 27718259 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]