These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35207049)

  • 1. Physical-Chemical and Structural Stability of Poly(3HB-co-3HV)/(ligno-)cellulosic Fibre-Based Biocomposites over Successive Dishwashing Cycles.
    Doineau E; Rol F; Gontard N; Angellier-Coussy H
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(3-hydroxybutyrate-
    Râpă M; Stefan LM; Seciu-Grama AM; Gaspar-Pintiliescu A; Matei E; Zaharia C; Stănescu PO; Predescu C
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and Mechanical Properties of the Biocomposites of
    Li Z; Reimer C; Wang T; Mohanty AK; Misra M
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32517200
    [No Abstract]   [Full Text] [Related]  

  • 4. Value-Added Use of Invasive Plant-Derived Fibers as PHBV Fillers for Biocomposite Development.
    Zhao X; Lawal T; Rodrigues MM; Geib T; Vodovotz Y
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34208535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental data for extrusion processing and tensile properties of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) polymer and wood fibre reinforced PHBV biocomposites.
    Vandi LJ; Chan CM; Werker A; Richardson D; Laycock B; Pratt S
    Data Brief; 2019 Feb; 22():687-692. PubMed ID: 30671517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Mechanical and Thermal Properties Decay of PHBV/Sisal and PLA/Sisal Biocomposites at Different Recycle Steps.
    Lagazzo A; Moliner C; Bosio B; Botter R; Arato E
    Polymers (Basel); 2019 Sep; 11(9):. PubMed ID: 31510004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional Reinforcement of Green Biopolymer Packaging Nanocomposites with Natural Cellulose Nanocrystal-Rosin Hybrids.
    Li F; Abdalkarim SYH; Yu HY; Zhu J; Zhou Y; Guan Y
    ACS Appl Bio Mater; 2020 Apr; 3(4):1944-1954. PubMed ID: 35025317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Influence of Chosen Plant Fillers in PHBV Composites on the Processing Conditions, Mechanical Properties and Quality of Molded Pieces.
    Frącz W; Janowski G; Smusz R; Szumski M
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Mechanical Properties Prediction of Poly [(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] (PHBV) Biocomposites on a Chosen Example.
    Janowski G; Frącz W; Bąk Ł
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and lignocellulosic fillers: Processes stored in data warehouse structured by an ontology.
    Munch M; Buche P; Dervaux S; Breysse A; Berthet MA; David G; Lammi S; Rol F; Viretto A; Angellier-Coussy H
    Data Brief; 2022 Jun; 42():108191. PubMed ID: 35515991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of natural fillers on the marine biodegradation behaviour of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
    Meereboer KW; Pal AK; Cisneros-López EO; Misra M; Mohanty AK
    Sci Rep; 2021 Jan; 11(1):911. PubMed ID: 33441581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Biodegradable Poly(3-hydroxybutyrate-
    Li F; Yu HY; Wang YY; Zhou Y; Zhang H; Yao JM; Abdalkarim SYH; Tam KC
    J Agric Food Chem; 2019 Oct; 67(39):10954-10967. PubMed ID: 31365242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial structure and property of eco-friendly carboxymethyl cellulose/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites.
    Zhou Y; Katsou E; Fan M
    Int J Biol Macromol; 2021 May; 179():550-556. PubMed ID: 33675832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitigating the Impact of Cellulose Particles on the Performance of Biopolyester-Based Composites by Gas-Phase Esterification.
    David G; Gontard N; Angellier-Coussy H
    Polymers (Basel); 2019 Jan; 11(2):. PubMed ID: 30960185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Ageing, Chemical Resistance, and Biodegradation of Biocomposites from Poly(Butylene Succinate) and Wheat Bran.
    Sasimowski E; Majewski Ł; Grochowicz M
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valorization of Hemp Hurds as Bio-Sourced Additives in PLA-Based Biocomposites.
    Momeni S; Safder M; Khondoker MAH; Elias AL
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and Mechanical Properties of Biocomposites Made of Poly(3-hydroxybutyrate-
    Righetti MC; Cinelli P; Mallegni N; Stäbler A; Lazzeri A
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperelastic Properties of Bamboo Cellulosic Fibre-Reinforced Silicone Rubber Biocomposites via Compression Test.
    Bahrain SHK; Rahim NNCA; Mahmud J; Mohammed MN; Sapuan SM; Ilyas RA; Alkhatib SE; Asyraf MRM
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of silver contents in cellulose nanocrystal/silver nanohybrids on PHBV crystallization and property improvements.
    Zhang H; Yu HY; Wang C; Yao J
    Carbohydr Polym; 2017 Oct; 173():7-16. PubMed ID: 28732915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized cellulose nanocrystals as the performance regulators of poly(β-hydroxybutyrate-co-valerate) biocomposites.
    Chen J; Yang R; Ou J; Tang C; Xiang M; Wu D; Tang J; Tam KC
    Carbohydr Polym; 2020 Aug; 242():116399. PubMed ID: 32564863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.