These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 35207057)
1. Intensification of Dry Reforming of Methane on Membrane Catalyst: Confirmation and Development of the Hypothesis. Gavrilova N; Gubin S; Myachina M; Sapunov V; Skudin V Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207057 [TBL] [Abstract][Full Text] [Related]
2. Transport Reagents through the Pore Structure of a Membrane Catalyst under Isothermal and Non-Isothermal Conditions. Gavrilova N; Gubin S; Myachina M; Skudin V Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34209108 [TBL] [Abstract][Full Text] [Related]
3. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane. Khairudin NF; Sukri MFF; Khavarian M; Mohamed AR Beilstein J Nanotechnol; 2018; 9():1162-1183. PubMed ID: 29719767 [TBL] [Abstract][Full Text] [Related]
4. In situ DRIFTs-based comprehensive reaction mechanism of photo-thermal synergetic catalysis for dry reforming of methane over Ru-CeO Zhang ZY; Xie T J Colloid Interface Sci; 2025 Jan; 677(Pt A):863-872. PubMed ID: 39126804 [TBL] [Abstract][Full Text] [Related]
5. Preparation, Characterization, and Activity of Pd/PSS-Modified Membranes in the Low Temperature Dry Reforming of Methane with and without Addition of Extra Steam. Mateos-Pedrero C; Soria MA; Guerrero-Ruíz A; Rodríguez-Ramos I Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357168 [TBL] [Abstract][Full Text] [Related]
6. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
7. Photo-Thermal Dry Reforming of Methane with PGM-Free and PGM-Based Catalysts: A Review. Varotto A; Pasqual Laverdura U; Feroci M; Grilli ML Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124473 [TBL] [Abstract][Full Text] [Related]
8. Dry Reforming of Methane on Ni/LaZrO Jiao H; Wang GC ACS Appl Mater Interfaces; 2024 Jul; 16(27):35166-35178. PubMed ID: 38924504 [TBL] [Abstract][Full Text] [Related]
9. Use of Pd-Ag Membrane Reactors for Low-Temperature Dry Reforming of Biogas-A Simulation Study. Albano M; Madeira LM; Miguel CV Membranes (Basel); 2023 Jun; 13(7):. PubMed ID: 37504996 [TBL] [Abstract][Full Text] [Related]
10. Performance of NiO doped on alkaline sludge from waste photovoltaic industries for catalytic dry reforming of methane. Shamsuddin MR; Teo SH; Azmi TSMT; Lahuri AH; Taufiq-Yap YH Environ Sci Pollut Res Int; 2024 Apr; ():. PubMed ID: 38635095 [TBL] [Abstract][Full Text] [Related]
11. Genesis of Active Pt/CeO Das S; Anjum U; Lim KH; He Q; Hoffman AS; Bare SR; Kozlov SM; Gates BC; Kawi S Small; 2023 Jun; 19(26):e2207272. PubMed ID: 36942900 [TBL] [Abstract][Full Text] [Related]
12. Petroleum Pitch-Derived Porous Carbon Materials as Metal-Free Catalyst for Dry Reforming of Methane. Huo K; Sun Y; Jiang H; Lin S; Fang H; Cheng Z; Cao S; Li L; Wang Y; Wu M Molecules; 2024 Sep; 29(19):. PubMed ID: 39407572 [TBL] [Abstract][Full Text] [Related]
13. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification. Castro-Dominguez B; Mardilovich IP; Ma LC; Ma R; Dixon AG; Kazantzis NK; Ma YH Membranes (Basel); 2016 Sep; 6(3):. PubMed ID: 27657143 [TBL] [Abstract][Full Text] [Related]
14. Visible-light-driven dry reforming of methane using a semiconductor-supported catalyst. Cho Y; Shoji S; Yamaguchi A; Hoshina T; Fujita T; Abe H; Miyauchi M Chem Commun (Camb); 2020 Apr; 56(33):4611-4614. PubMed ID: 32211643 [TBL] [Abstract][Full Text] [Related]
15. An investigation on the relationship between physicochemical characteristics of alumina-supported cobalt catalyst and its performance in dry reforming of methane. Khairudin NF; Mohammadi M; Mohamed AR Environ Sci Pollut Res Int; 2021 Jun; 28(23):29157-29176. PubMed ID: 33550559 [TBL] [Abstract][Full Text] [Related]
16. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane. Kawi S; Kathiraser Y; Ni J; Oemar U; Li Z; Saw ET ChemSusChem; 2015 Nov; 8(21):3556-75. PubMed ID: 26440576 [TBL] [Abstract][Full Text] [Related]
17. Retracted Article: Computational fluid dynamics modeling of the millisecond methane steam reforming in microchannel reactors for hydrogen production. Chen J; Gao X; Yan L; Xu D RSC Adv; 2018 Jul; 8(44):25183-25200. PubMed ID: 35542137 [TBL] [Abstract][Full Text] [Related]
18. Iron-promoted zirconia-alumina supported Ni catalyst for highly efficient and cost-effective hydrogen production via dry reforming of methane. Al-Fatesh AS; Patel N; Srivastava VK; Osman AI; Rooney DW; Fakeeha AH; Abasaeed AE; Alotibi MF; Kumar R J Environ Sci (China); 2025 Feb; 148():274-282. PubMed ID: 39095164 [TBL] [Abstract][Full Text] [Related]
19. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field. Motomura A; Nakaya Y; Sampson C; Higo T; Torimoto M; Tsuneki H; Furukawa S; Sekine Y RSC Adv; 2022 Oct; 12(44):28359-28363. PubMed ID: 36320534 [TBL] [Abstract][Full Text] [Related]
20. Ni Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]