These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35207062)

  • 1. A Strategy toward Realizing Narrow Line with High Electrical Conductivity by Electrohydrodynamic Printing.
    Liang H; Yao R; Zhang G; Zhang X; Liang Z; Yang Y; Ning H; Zhong J; Qiu T; Peng J
    Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic Printing of Microscale PEDOT:PSS-PEO Features with Tunable Conductive/Thermal Properties.
    Chang J; He J; Lei Q; Li D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):19116-19122. PubMed ID: 29745637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver Nano-Inks Synthesized with Biobased Polymers for High-Resolution Electrohydrodynamic Printing Toward In-Space Manufacturing.
    Kirscht T; Jiang L; Liu F; Jiang X; Marander M; Ortega R; Qin H; Jiang S
    ACS Appl Mater Interfaces; 2024 Aug; 16(33):44225-44235. PubMed ID: 39079046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial Electrohydrodynamic Printing of Microscale Core-Shell Conductive Features for Integrated Fabrication of Flexible Transparent Electronics.
    Yu K; Qiu Z; Gu B; Li J; Meng Z; Li D; He J
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1114-1128. PubMed ID: 38133830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Resolution and Large-Area Patterning of Highly Conductive Silver Nanowire Electrodes by Reverse Offset Printing and Intense Pulsed Light Irradiation.
    Park K; Woo K; Kim J; Lee D; Ahn Y; Song D; Kim H; Oh D; Kwon S; Lee Y
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14882-14891. PubMed ID: 30919616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution Patterning Using Two Modes of Electrohydrodynamic Jet: Drop on Demand and Near-field Electrospinning.
    Phung TH; Oh S; Kwon KS
    J Vis Exp; 2018 Jul; (137):. PubMed ID: 30059021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.
    Zhang B; Seong B; Lee J; Nguyen V; Cho D; Byun D
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29965-29972. PubMed ID: 28806052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterning of High-Viscosity Silver Paste by an Electrohydrodynamic-Jet Printer for Use in TFT Applications.
    Can TTT; Nguyen TC; Choi WS
    Sci Rep; 2019 Jun; 9(1):9180. PubMed ID: 31235720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry Control of Source/Drain Electrodes in Organic Field-Effect Transistors by Electrohydrodynamic Inkjet Printing.
    Sleczkowski P; Borkowski M; Zajaczkowska H; Ulanski J; Pisula W; Marszalek T
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33167331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-Sensing Inks Using Electrohydrodynamic Inkjet Printing Technology.
    Ahn JH; Hong HJ; Lee CY
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive Manufacturing for Terahertz Metamaterials on the Dielectric Surface based on Optimized Electrohydrodynamic Drop-on-demand Printing Technology.
    Gong H; Huang J; Wang J; Zhao P; Guo M; Liang C; Bai D; Jiang Z; Li R
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4222-4230. PubMed ID: 38215444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of One-Dimensional Pillar Arrays by Electrohydrodynamic Jet Printing for Glucose Sensor.
    Go EB; Kim HT; Kim CY
    J Biomed Nanotechnol; 2017 Jan; 13(1):61-7. PubMed ID: 29372990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics.
    Cui Z; Han Y; Huang Q; Dong J; Zhu Y
    Nanoscale; 2018 Apr; 10(15):6806-6811. PubMed ID: 29537024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrohydrodynamic jet-printed zinc-tin oxide TFTs and their bias stability.
    Lee YG; Choi WS
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11167-72. PubMed ID: 25000343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise Aggregation Control of PEDOT:PSS Enabled High-Conductivity, High-Resolution Printing of Polymer Electrodes for Transparent Organic Phototransistors.
    Xiao X; Shen X; Tie Y; Zhao Y; Yang R; Li Y; Li W; Tang L; Li R; Wang YX; Hu W
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):29217-29225. PubMed ID: 38776472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.
    Lee H; Seong B; Kim J; Jang Y; Byun D
    Small; 2014 Oct; 10(19):3918-22. PubMed ID: 24925213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directionally Aligned Amorphous Polymer Chains via Electrohydrodynamic-Jet Printing: Analysis of Morphology and Polymer Field-Effect Transistor Characteristics.
    Kim Y; Bae J; Song HW; An TK; Kim SH; Kim YH; Park CE
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39493-39501. PubMed ID: 29058867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.