These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 35207081)
1. A Novel Ocean Thermal Energy Driven System for Sustainable Power and Fresh Water Supply. Ma Q; Zheng Y; Lu H; Li J; Wang S; Wang C; Wu Z; Shen Y; Liu X Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207081 [TBL] [Abstract][Full Text] [Related]
2. Analysis of the environmental issues concerning the deployment of an OTEC power plant in Martinique. Devault DA; Péné-Annette A Environ Sci Pollut Res Int; 2017 Nov; 24(33):25582-25601. PubMed ID: 28523612 [TBL] [Abstract][Full Text] [Related]
3. Finite-Time Thermodynamic Model for Evaluating Heat Engines in Ocean Thermal Energy Conversion. Yasunaga T; Ikegami Y Entropy (Basel); 2020 Feb; 22(2):. PubMed ID: 33285986 [TBL] [Abstract][Full Text] [Related]
4. Exergy, exergoeconomic optimization and exergoenvironmental analysis of a hybrid solar, wind, and marine energy power system: A strategy for carbon-free electrical production. Zainul R; Basem A; J Alfaker M; Sharma P; Kumar A; Al-Bahrani M; Elawady A; Abbas M; Fooladi H; Pandey S Heliyon; 2024 Aug; 10(16):e35171. PubMed ID: 39253151 [TBL] [Abstract][Full Text] [Related]
5. Robust SMC-PSS and AVR design: A grid connected solar concentrated OTEC system application. Abubakr H; Lashab A; Mohamed TH; Vasquez JC; Guerrero JM; Dahab YA PLoS One; 2023; 18(12):e0295941. PubMed ID: 38134013 [TBL] [Abstract][Full Text] [Related]
6. Indirect air CO Straatman PJT; van Sark WGJHM iScience; 2021 Jul; 24(7):102754. PubMed ID: 34278262 [TBL] [Abstract][Full Text] [Related]
7. Parametric thermodynamic analysis and economic assessment of a novel solar heliostat-molten carbonate fuel cell system for electricity and fresh water production. Sadeghi S; Askari IB Environ Sci Pollut Res Int; 2022 Jan; 29(4):5469-5495. PubMed ID: 34420171 [TBL] [Abstract][Full Text] [Related]
8. Energy, exergy, emergy, and economic evaluation of a novel two-stage solar Rankine power plant. Hosseini R; Babaelahi M; Rafat E Environ Sci Pollut Res Int; 2022 Nov; 29(52):79140-79155. PubMed ID: 35705763 [TBL] [Abstract][Full Text] [Related]
9. Potential effects of deep seawater discharge by an Ocean Thermal Energy Conversion plant on the marine microorganisms in oligotrophic waters. Giraud M; Garçon V; de la Broise D; L'Helguen S; Sudre J; Boye M Sci Total Environ; 2019 Nov; 693():133491. PubMed ID: 31362231 [TBL] [Abstract][Full Text] [Related]
10. Growth of ocean thermal energy conversion resources under greenhouse warming regulated by oceanic eddies. Du T; Jing Z; Wu L; Wang H; Chen Z; Ma X; Gan B; Yang H Nat Commun; 2022 Nov; 13(1):7249. PubMed ID: 36433956 [TBL] [Abstract][Full Text] [Related]
11. Tri-objective optimization of a waste-to-energy plant with super critical carbon dioxide and multi-effect water desalination for building application based on biomass fuels. Zhu G; Tian C; Liu X; Yang Y; Wang S Chemosphere; 2023 Sep; 336():139108. PubMed ID: 37302493 [TBL] [Abstract][Full Text] [Related]
12. Efficiency Enhancement in Ocean Thermal Energy Conversion: A Comparative Study of Heat Exchanger Designs for Bi Chung YC; Wu CI Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591609 [TBL] [Abstract][Full Text] [Related]
13. Investigation of a novel solar-assisted multigeneration system comprising water desalination systems, an absorption refrigeration system, a single-effect absorption heat transformer and two organic Rankine cycles. Salehi S; Javanfam F Heliyon; 2024 Sep; 10(17):e36452. PubMed ID: 39296036 [TBL] [Abstract][Full Text] [Related]
14. A comparative energy and exergy optimization of a supercritical-CO Valencia Ochoa G; Duarte Forero J; Rojas JP Heliyon; 2020 Jun; 6(6):e04136. PubMed ID: 32548328 [TBL] [Abstract][Full Text] [Related]
15. Minimizing energy footprint of seawater desalination system via wind power generation in coastal areas. Guo P; Liu Z; Huang S; Liu S; Han M J Environ Manage; 2024 Oct; 369():122244. PubMed ID: 39241600 [TBL] [Abstract][Full Text] [Related]
16. Energy, exergy, and environmental assessment of a small-scale solar organic Rankine cycle using different organic fluids. Polanco Piñerez G; Valencia Ochoa G; Duarte-Forero J Heliyon; 2021 Sep; 7(9):e07947. PubMed ID: 34553085 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Wang W; Shi Y; Zhang C; Hong S; Shi L; Chang J; Li R; Jin Y; Ong C; Zhuo S; Wang P Nat Commun; 2019 Jul; 10(1):3012. PubMed ID: 31289262 [TBL] [Abstract][Full Text] [Related]
18. A systematic construction of water-electricity cogeneration and thermal membrane coupling desalination technology using the waste heat in steel industry. Zhang Y; Yuan Z; Zhao L; Liao L; Zhao H Environ Res; 2022 Sep; 212(Pt C):113458. PubMed ID: 35577004 [TBL] [Abstract][Full Text] [Related]
19. Comparison of exergy and exergy economic evaluation of different geothermal cogeneration systems for optimal waste energy recovery. Guo Q; Khanmohammadi S Chemosphere; 2023 Oct; 339():139586. PubMed ID: 37516323 [TBL] [Abstract][Full Text] [Related]
20. A review on role of solar photovoltaic (PV) modules in enhancing sustainable water production capacity of solar distillation units. Sharon H; Vivar M; Fuentes M J Environ Manage; 2022 Oct; 320():115781. PubMed ID: 35944319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]