BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35207141)

  • 1. Dielectric Properties of Aqueous Electrolyte Solutions Confined in Silica Nanopore: Molecular Simulation vs. Continuum-Based Models.
    Zhu H; Hu B
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of dielectric constants of water in a nano-confined pore.
    Zhu H; Yang F; Zhu Y; Li A; He W; Huang J; Li G
    RSC Adv; 2020 Feb; 10(15):8628-8635. PubMed ID: 35496528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous dielectric behaviors of electrolyte solutions confined in graphene oxide nanochannels.
    Hu B; Zhu H
    Sci Rep; 2021 Sep; 11(1):18689. PubMed ID: 34548592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous dielectric behavior of nanoconfined electrolytic solutions.
    Zhu H; Ghoufi A; Szymczyk A; Balannec B; Morineau D
    Phys Rev Lett; 2012 Sep; 109(10):107801. PubMed ID: 23005328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling nanofiltration of electrolyte solutions.
    Yaroshchuk A; Bruening ML; Zholkovskiy E
    Adv Colloid Interface Sci; 2019 Jun; 268():39-63. PubMed ID: 30951927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unravelling the anomalous dielectric permittivity of nanoconfined electrolyte solutions.
    Renou R; Szymczyk A; Ghoufi A
    Nanoscale; 2015 Apr; 7(15):6661-6. PubMed ID: 25797038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H; Galindo A; Sanz E; Vega C
    J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulations of confined liquids: an alternative to the grand canonical Monte Carlo simulations.
    Ghoufi A; Morineau D; Lefort R; Hureau I; Hennous L; Zhu H; Szymczyk A; Malfreyt P; Maurin G
    J Chem Phys; 2011 Feb; 134(7):074104. PubMed ID: 21341825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alchemical Osmostat for Monte Carlo Simulation: Sampling Aqueous Electrolyte Solution in Open Systems.
    Izarra A; Coudert FX; Fuchs AH; Boutin A
    J Phys Chem B; 2023 Jan; 127(3):766-776. PubMed ID: 36634303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finding Infinities in Nanoconfined Geothermal Electrolyte Static Dielectric Properties and Implications on Ion Adsorption/Pairing.
    Leung K
    Nano Lett; 2023 Oct; 23(19):8868-8874. PubMed ID: 37531607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dielectric constant and density of aqueous alkali halide solutions by molecular dynamics: A force field assessment.
    Saric D; Kohns M; Vrabec J
    J Chem Phys; 2020 Apr; 152(16):164502. PubMed ID: 32357782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reply to the 'Comment on "Investigation of dielectric constants of water in a nano-confined pore"' by S. Mondal and B. Bagchi,
    Zhu H; Hu H; Hu B; He W; Huang J; Li G
    RSC Adv; 2021 Jan; 11(10):5753-5754. PubMed ID: 35426987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective potentials for 1:1 electrolyte solutions incorporating dielectric saturation and repulsive hydration.
    Lenart PJ; Jusufi A; Panagiotopoulos AZ
    J Chem Phys; 2007 Jan; 126(4):044509. PubMed ID: 17286489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining the dielectric constant inside pores of nanofiltration membranes from membrane potential measurements.
    Escoda A; Lanteri Y; Fievet P; Déon S; Szymczyk A
    Langmuir; 2010 Sep; 26(18):14628-35. PubMed ID: 20795661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent description of ion-specificity in bulk and at interfaces by solvent implicit simulations and mean-field theory.
    Dos Santos AP; Uematsu Y; Rathert A; Loche P; Netz RR
    J Chem Phys; 2020 Jul; 153(3):034103. PubMed ID: 32716168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of different organic solvents on sodium ion storage in carbon nanopores.
    Karatrantos A; Khan S; Ohba T; Cai Q
    Phys Chem Chem Phys; 2018 Feb; 20(9):6307-6315. PubMed ID: 29435523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolyte exclusion from charged adsorbent: replica Ornstein-Zernike theory and simulations.
    Luksic M; Hribar-Lee B; Vlachy V
    J Phys Chem B; 2007 May; 111(21):5966-75. PubMed ID: 17488109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements.
    Lanteri Y; Fievet P; Szymczyk A
    J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing electrolyte-silica interactions through simulations of the infrared spectroscopy of nanoscale pores.
    Senanayake HS; Greathouse JA; Thompson WH
    J Chem Phys; 2022 Jul; 157(3):034702. PubMed ID: 35868937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.