These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35207161)

  • 1. Experimental Study and Mathematical Modeling of a Nanofiltration Membrane System for the Recovery of Polyphenols from Wine Lees.
    López-Borrell A; López-Pérez MF; Cardona SC; Lora-García J
    Membranes (Basel); 2022 Feb; 12(2):. PubMed ID: 35207161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Nanofiltration and Reverse Osmosis Technologies in Polyphenols Recovery Schemes from Winery and Olive Mill Wastes by Aqueous-Based Processing.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Saurina J; Granados M; Cortina JL
    Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview.
    Pérez-Bibbins B; Torrado-Agrasar A; Salgado JM; Oliveira RP; Domínguez JM
    Waste Manag; 2015 Jun; 40():72-81. PubMed ID: 25824282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of membrane processes for the recovery and separation of polyphenols from winery and olive mill wastes using green solvent-based processing.
    Tapia-Quirós P; Montenegro-Landívar MF; Reig M; Vecino X; Saurina J; Granados M; Cortina JL
    J Environ Manage; 2022 Apr; 307():114555. PubMed ID: 35085965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Membrane Filtration to Recover Polyphenols and Organic Acids from Red Wine Lees: The Antioxidant Properties of the Spray-Dried Concentrate.
    Filippou P; Mitrouli ST; Vareltzis P
    Membranes (Basel); 2022 Mar; 12(4):. PubMed ID: 35448323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane-Based Clarification and Fractionation of Red Wine Lees Aqueous Extracts.
    Cassano A; Bentivenga A; Conidi C; Galiano F; Saoncella O; Figoli A
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31248027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of pomegranate wine lees as a valuable source for the recovery of (poly)phenolic compounds.
    Mena P; Ascacio-Valdés JA; Gironés-Vilaplana A; Del Rio D; Moreno DA; García-Viguera C
    Food Chem; 2014 Feb; 145():327-34. PubMed ID: 24128485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rosé Sparkling Wines: Influence of Winemaking Practices on the Phytochemical Polyphenol During Aging on Lees and Commercial Storage.
    Sartor S; Burin VM; Panceri CP; Dos Passos RR; Caliari V; Bordignon-Luiz MT
    J Food Sci; 2018 Nov; 83(11):2790-2801. PubMed ID: 30370927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between yeast lees and wine polyphenols during simulation of wine aging: I. Analysis of remnant polyphenolic compounds in the resulting wines.
    Mazauric JP; Salmon JM
    J Agric Food Chem; 2005 Jul; 53(14):5647-53. PubMed ID: 15998128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between yeast lees and wine polyphenols during simulation of wine aging. II. Analysis of desorbed polyphenol compounds from yeast lees.
    Mazauric JP; Salmon JM
    J Agric Food Chem; 2006 May; 54(11):3876-81. PubMed ID: 16719509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes.
    Arboleda Mejia JA; Ricci A; Figueiredo AS; Versari A; Cassano A; Parpinello GP; De Pinho MN
    Foods; 2020 Nov; 9(11):. PubMed ID: 33198068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance.
    Mir-Cerdà A; Carretero I; Coves JR; Pedrouso A; Castro-Barros CM; Alvarino T; Cortina JL; Saurina J; Granados M; Sentellas S
    Sci Total Environ; 2023 Jan; 857(Pt 3):159623. PubMed ID: 36283524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant activity of lees cell surface during sparkling wine sur lie aging.
    Gallardo-Chacón JJ; Vichi S; Urpí P; López-Tamames E; Buxaderas S
    Int J Food Microbiol; 2010 Sep; 143(1-2):48-53. PubMed ID: 20709418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined Experimental and CFD Approach of Two-Phase Flow Driven by Low Thermal Gradients in Wine Tanks: Application to Light Lees Resuspension.
    Bogard F; Beaumont F; Vasserot Y; Simescu-Lazar F; Nsom B; Liger-Belair G; Polidori G
    Foods; 2020 Jul; 9(7):. PubMed ID: 32630621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red and White Wine Lees Show Inhibitory Effects on Liver Carcinogenesis.
    Fernández-Bedmar Z; Anter J; Alonso-Moraga A; Delgado de la Torre P; Luque de Castro MD; Millán-Ruiz Y; Sánchez-Frías M; Guil-Luna S
    Mol Nutr Food Res; 2019 May; 63(9):e1800864. PubMed ID: 30730089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes.
    Montenegro-Landívar MF; Tapia-Quirós P; Vecino X; Reig M; Granados M; Farran A; Cortina JL; Saurina J; Valderrama C
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tentative identification of polar and mid-polar compounds in extracts from wine lees by liquid chromatography-tandem mass spectrometry in high-resolution mode.
    Delgado de la Torre MP; Priego-Capote F; Luque de Castro MD
    J Mass Spectrom; 2015 Jun; 50(6):826-37. PubMed ID: 26169137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic co-digestion of winery waste: comparative assessment of grape marc waste and lees derived from organic crops.
    Hungría J; Siles JA; Chica AF; Gil A; Martín MA
    Environ Technol; 2021 Sep; 42(23):3618-3626. PubMed ID: 32114938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wine lees modulate lipid metabolism and induce fatty acid remodelling in zebrafish.
    Caro M; Sansone A; Amezaga J; Navarro V; Ferreri C; Tueros I
    Food Funct; 2017 Apr; 8(4):1652-1659. PubMed ID: 28322379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of arsenic (III) removal from aqueous solution using film theory combined Spiegler-Kedem model: pilot-scale study.
    Rajendran RM; Garg S; Bajpai S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):13886-13899. PubMed ID: 33205270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.