These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 35207509)

  • 1. The Beneficial Effects of Cyanobacterial Co-Culture on Plant Growth.
    Kollmen J; Strieth D
    Life (Basel); 2022 Jan; 12(2):. PubMed ID: 35207509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tansley Review No. 116: Cyanobacterium-plant symbioses.
    Rai AN; Söderbäck E; Bergman B
    New Phytol; 2000 Sep; 147(3):449-481. PubMed ID: 33862930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant-cyanobacteria interactions: Beneficial and harmful effects of cyanobacterial bioactive compounds on soil-plant systems and subsequent risk to animal and human health.
    Bahareh Nowruzi ; Bouaïcha N; Metcalf JS; Porzani SJ; Konur O
    Phytochemistry; 2021 Dec; 192():112959. PubMed ID: 34649057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyanobacteria-bryophyte symbioses.
    Adams DG; Duggan PS
    J Exp Bot; 2008; 59(5):1047-58. PubMed ID: 18267939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-cultivation of diazotrophic terrestrial cyanobacteria and
    Strieth D; Di Nonno S; Stiefelmaier J; Kollmen J; Geib D; Ulber R
    Eng Life Sci; 2021 Mar; 21(3-4):126-136. PubMed ID: 33716612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity, Genomics, and Distribution of Phytoplankton-Cyanobacterium Single-Cell Symbiotic Associations.
    Foster RA; Zehr JP
    Annu Rev Microbiol; 2019 Sep; 73():435-456. PubMed ID: 31500535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feathermoss and epiphytic Nostoc cooperate differently: expanding the spectrum of plant-cyanobacteria symbiosis.
    Warshan D; Espinoza JL; Stuart RK; Richter RA; Kim SY; Shapiro N; Woyke T; C Kyrpides N; Barry K; Singan V; Lindquist E; Ansong C; Purvine SO; M Brewer H; Weyman PD; Dupont CL; Rasmussen U
    ISME J; 2017 Dec; 11(12):2821-2833. PubMed ID: 28800136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary genomic insights into cyanobacterial symbioses in plants.
    de Vries S; de Vries J
    Quant Plant Biol; 2022; 3():e16. PubMed ID: 37077989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on possible elicitor molecules of cyanobacteria: their role in improving plant growth and providing tolerance against biotic or abiotic stress.
    Singh S
    J Appl Microbiol; 2014 Nov; 117(5):1221-44. PubMed ID: 25069397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states.
    Meeks JC; Elhai J
    Microbiol Mol Biol Rev; 2002 Mar; 66(1):94-121; table of contents. PubMed ID: 11875129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis.
    Zheng W; Bergman B; Chen B; Zheng S; Xiang G; Rasmussen U
    New Phytol; 2009; 181(1):53-61. PubMed ID: 19076717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen fixation in eukaryotes--new models for symbiosis.
    Kneip C; Lockhart P; Voss C; Maier UG
    BMC Evol Biol; 2007 Apr; 7():55. PubMed ID: 17408485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of a sulfated exopolysaccharide, synechan, and bloom formation in the model cyanobacterium
    Maeda K; Okuda Y; Enomoto G; Watanabe S; Ikeuchi M
    Elife; 2021 Jun; 10():. PubMed ID: 34127188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cyanobacterial role in the resistance of feather mosses to decomposition--toward a new hypothesis.
    Rousk K; Deluca TH; Rousk J
    PLoS One; 2013; 8(4):e62058. PubMed ID: 23614013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The accumulation and degradation dynamics of cyanophycin in cyanobacteria grown in symbiotic associations with plant tissues and cells].
    Gorelova OA; Kleĭmenov SIu
    Mikrobiologiia; 2003; 72(3):361-9. PubMed ID: 12901011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation, growth, and nitrogen fixation rates of the
    Pyle AE; Johnson AM; Villareal TA
    PeerJ; 2020; 8():e10115. PubMed ID: 33083143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-cultivation Approach to Decipher the Influence of Nitrogen-Fixing Cyanobacterium on Growth and N Uptake in Rice Crop.
    Priya H; Dhar DW; Singh R; Kumar S; Dhandapani R; Pandey R; Govindasamy V; Kumar A
    Curr Microbiol; 2022 Jan; 79(2):53. PubMed ID: 34982252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium.
    Ran L; Larsson J; Vigil-Stenman T; Nylander JA; Ininbergs K; Zheng WW; Lapidus A; Lowry S; Haselkorn R; Bergman B
    PLoS One; 2010 Jul; 5(7):e11486. PubMed ID: 20628610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Nostoc-Gunnera symbiosis.
    Bergman B; Johansson C; Söderbäck E
    New Phytol; 1992 Nov; 122(3):379-400. PubMed ID: 33874210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor.
    Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T
    Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.