BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35207570)

  • 1. Metabolic Insight into Cold Stress Response in Two Contrasting Maize Lines.
    Yu T; Zhang J; Cao J; Li X; Li S; Liu C; Wang L
    Life (Basel); 2022 Feb; 12(2):. PubMed ID: 35207570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels.
    Yu T; Zhang J; Cao J; Cai Q; Li X; Sun Y; Li S; Li Y; Hu G; Cao S; Liu C; Wang G; Wang L; Duan Y
    Genomics; 2021 Mar; 113(2):782-794. PubMed ID: 33516847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage.
    Xuhui L; Weiwei C; Siqi L; Junteng F; Hang Z; Xiangbo Z; Yongwen Q
    BMC Plant Biol; 2022 Aug; 22(1):398. PubMed ID: 35963989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome Profiling of Maize (
    Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic response of maize primary roots to low temperatures at seedling emergence.
    Di Fenza M; Hogg B; Grant J; Barth S
    PeerJ; 2017; 5():e2839. PubMed ID: 28168096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.
    Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J
    BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population.
    Goering R; Larsen S; Tan J; Whelan J; Makarevitch I
    PLoS One; 2021; 16(7):e0254437. PubMed ID: 34242344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses.
    Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hub Gene Mining and Co-Expression Network Construction of Low-Temperature Response in Maize of Seedling by WGCNA.
    Yu T; Zhang J; Cao J; Ma X; Li W; Yang G
    Genes (Basel); 2023 Aug; 14(8):. PubMed ID: 37628649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastic responses in the metabolome and functional traits of maize plants to temperature variations.
    Sun CX; Gao XX; Li MQ; Fu JQ; Zhang YL
    Plant Biol (Stuttg); 2016 Mar; 18(2):249-61. PubMed ID: 26280133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic Profiling of the Maize (
    Li P; Cao W; Fang H; Xu S; Yin S; Zhang Y; Lin D; Wang J; Chen Y; Xu C; Yang Z
    Front Plant Sci; 2017; 8():290. PubMed ID: 28298920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomic profiling revealed genes involved in response to cold stress in maize.
    Li M; Sui N; Lin L; Yang Z; Zhang Y
    Funct Plant Biol; 2019 Aug; 46(9):830-844. PubMed ID: 31217070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A meta-analysis reveals differential sensitivity of cold stress responses in the maize leaf.
    Lainé CMS; AbdElgawad H; Beemster GTS
    Plant Cell Environ; 2023 Aug; 46(8):2432-2449. PubMed ID: 37170821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic profiling of the high-vigour maize (Zea mays L.) hybrid variety response to cold and drought stresses during seed germination.
    Li H; Yue H; Xie J; Bu J; Li L; Xin X; Zhao Y; Zhang H; Yang L; Wang J; Jiang X
    Sci Rep; 2021 Sep; 11(1):19345. PubMed ID: 34588562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling.
    Luo B; Ma P; Nie Z; Zhang X; He X; Ding X; Feng X; Lu Q; Ren Z; Lin H; Wu Y; Shen Y; Zhang S; Wu L; Liu D; Pan G; Rong T; Gao S
    Plant J; 2019 Mar; 97(5):947-969. PubMed ID: 30472798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.
    Ganie AH; Ahmad A; Pandey R; Aref IM; Yousuf PY; Ahmad S; Iqbal M
    PLoS One; 2015; 10(6):e0129520. PubMed ID: 26090681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.