These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 35207952)

  • 41. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli.
    Leong YK; Show PL; Ooi CW; Ling TC; Lan JC
    J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial polyhydroxyalkanoates as medical implant biomaterials.
    Chen GQ; Zhang J
    Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):1-18. PubMed ID: 28849679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance.
    de Eugenio LI; Escapa IF; Morales V; Dinjaski N; Galán B; García JL; Prieto MA
    Environ Microbiol; 2010 Jan; 12(1):207-21. PubMed ID: 19788655
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications.
    Tortajada M; da Silva LF; Prieto MA
    Int Microbiol; 2013 Mar; 16(1):1-15. PubMed ID: 24151777
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria.
    Kamravamanesh D; Lackner M; Herwig C
    Bioengineering (Basel); 2018 Dec; 5(4):. PubMed ID: 30567391
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Beyond Intracellular Accumulation of Polyhydroxyalkanoates: Chiral Hydroxyalkanoic Acids and Polymer Secretion.
    Yañez L; Conejeros R; Vergara-Fernández A; Scott F
    Front Bioeng Biotechnol; 2020; 8():248. PubMed ID: 32318553
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Volatile fatty acids influence on the structure of microbial communities producing PHAs.
    Ciesielski S; Przybylek G
    Braz J Microbiol; 2014; 45(2):395-402. PubMed ID: 25242921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks.
    Chavan S; Yadav B; Tyagi RD; Drogui P
    Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nanosystems.
    Durán-Lara EF; Rafael D; Andrade F; Lobos G O; Vijayakumar S
    Curr Med Chem; 2023 Oct; ():. PubMed ID: 37828676
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Future of microbial polyesters.
    Lee GN; Na J
    Microb Cell Fact; 2013 May; 12():54. PubMed ID: 23714196
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tailored biosynthesis of polyhydroxyalkanoates in chemostat cultures.
    Amstutz V; Hanik N; Pott J; Utsunomia C; Zinn M
    Methods Enzymol; 2019; 627():99-123. PubMed ID: 31630749
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses.
    Valappil SP; Misra SK; Boccaccini AR; Roy I
    Expert Rev Med Devices; 2006 Nov; 3(6):853-68. PubMed ID: 17280548
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol.
    Muangwong A; Boontip T; Pachimsawat J; Napathorn SC
    Microb Cell Fact; 2016 Mar; 15():55. PubMed ID: 26988857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 2D-DIGE-based proteomic analysis brings new insights into cellular responses of Pseudomonas putida KT2440 during polyhydroxyalkanoates synthesis.
    Możejko-Ciesielska J; Mostek A
    Microb Cell Fact; 2019 May; 18(1):93. PubMed ID: 31138236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications.
    Kalia VC; Singh Patel SK; Shanmugam R; Lee JK
    Bioresour Technol; 2021 Apr; 326():124737. PubMed ID: 33515915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Binary polyhydroxyalkanoate systems for soft tissue engineering.
    Lukasiewicz B; Basnett P; Nigmatullin R; Matharu R; Knowles JC; Roy I
    Acta Biomater; 2018 Apr; 71():225-234. PubMed ID: 29501818
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perspectives on the production, structural characteristics and potential applications of bioplastics derived from polyhydroxyalkanoates.
    Albuquerque PBS; Malafaia CB
    Int J Biol Macromol; 2018 Feb; 107(Pt A):615-625. PubMed ID: 28916381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.