These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 35207952)

  • 61. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources.
    Nduko JM; Taguchi S
    Front Bioeng Biotechnol; 2020; 8():618077. PubMed ID: 33614605
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Current trends in biodegradable polyhydroxyalkanoates.
    Chanprateep S
    J Biosci Bioeng; 2010 Dec; 110(6):621-32. PubMed ID: 20719562
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular identification of polyhydroxyalkanoates-producing bacteria isolated from enriched microbial community.
    Ciesielski S; Pokoj T; Mozejko J; Klimiuk E
    Pol J Microbiol; 2013; 62(1):45-50. PubMed ID: 23829076
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent strategies for efficient production of polyhydroxyalkanoates by micro-organisms.
    Liu CC; Zhang LL; An J; Chen B; Yang H
    Lett Appl Microbiol; 2016 Jan; 62(1):9-15. PubMed ID: 26482840
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources.
    Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ
    Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source.
    Wang P; Chen XT; Qiu YQ; Liang XF; Cheng MM; Wang YJ; Ren LH
    Biotechnol Appl Biochem; 2020 May; 67(3):307-316. PubMed ID: 31702835
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics.
    Marcos-García M; García-Fraile P; Filipová A; Menéndez E; Mateos PF; Velázquez E; Cajthaml T; Rivas R
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17436-17445. PubMed ID: 28593540
    [TBL] [Abstract][Full Text] [Related]  

  • 68. P(3HB-
    Huong KH; Sevakumaran V; Amirul AA
    Crit Rev Biotechnol; 2021 Jun; 41(4):474-490. PubMed ID: 33726581
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Application of thermo-separating aqueous two-phase system in extractive bioconversion of polyhydroxyalkanoates by Cupriavidus necator H16.
    Leong YK; Show PL; Lan JC; Krishnamoorthy R; Chu DT; Nagarajan D; Yen HW; Chang JS
    Bioresour Technol; 2019 Sep; 287():121474. PubMed ID: 31122870
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Microbial polyhydroxyalkanoates (PHAs): an emerging biomaterial for tissue engineering and therapeutic applications.
    Sudesh K
    Med J Malaysia; 2004 May; 59 Suppl B():55-6. PubMed ID: 15468816
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production.
    Szacherska K; Oleskowicz-Popiel P; Ciesielski S; Mozejko-Ciesielska J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498279
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications.
    Muthuraj R; Valerio O; Mekonnen TH
    Int J Biol Macromol; 2021 Sep; 187():422-440. PubMed ID: 34324901
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biosynthesis of Polyhydroxyalkanoates (PHAs) by the Valorization of Biomass and Synthetic Waste.
    Javaid H; Nawaz A; Riaz N; Mukhtar H; -Ul-Haq I; Shah KA; Khan H; Naqvi SM; Shakoor S; Rasool A; Ullah K; Manzoor R; Kaleem I; Murtaza G
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255864
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.
    Sathiyanarayanan G; Saibaba G; Kiran GS; Yang YH; Selvin J
    Crit Rev Microbiol; 2017 May; 43(3):294-312. PubMed ID: 27824282
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biomedical Applications of Polyhydroxyalkanoates.
    Ray S; Kalia VC
    Indian J Microbiol; 2017 Sep; 57(3):261-269. PubMed ID: 28904409
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers.
    Zhuang Q; Qi Q
    Microb Cell Fact; 2019 Aug; 18(1):135. PubMed ID: 31409350
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates.
    Kim DY; Kim HW; Chung MG; Rhee YH
    J Microbiol; 2007 Apr; 45(2):87-97. PubMed ID: 17483792
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review.
    Grigore ME; Grigorescu RM; Iancu L; Ion RM; Zaharia C; Andrei ER
    J Biomater Sci Polym Ed; 2019; 30(9):695-712. PubMed ID: 31012805
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing.
    Kosseva MR; Rusbandi E
    Int J Biol Macromol; 2018 Feb; 107(Pt A):762-778. PubMed ID: 28928063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.